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A Nodal Method for Solving Transient Fewgroup
Neutron Diffusion Equations

by

R. A. Shober
Argonne National Laboratory

ABSTRACT

A nodal method for multidimensional light water reactor (LWR)
static and transient analysis is presented in this report. This
method efficiently solves one- or two-group diffusion equations
using an analytic solution procedure. This report details signifi-
cant improvements made to those aspects of the method previously
reported in the literature. Eigenvalues and power distributions
are presented for several static benchmark problems. Time-dependent
results for a difficult two-dimensional BWR kinetics benchmark pro-
blem are presented. A reference solution for this benchmark problem
is also presented. The results presented in this report are
summarized, and suggestions are made as to appropriate ways to
extend this work to multigroup fast breeder reactor analysis.






I. INTRODUCTION

In this report, a method for solving the multidimensional, one- or two-
group time-dependent neutron diffusion equations is developed. Although the
specific method discussed here is limited to one or two neutron groups, the
techniques used in the development of the method are important for an under-
standing of future methods development work which will be carried out in order
to solve the multigroup neutron diffusion equations.

For light water reactors (LWR's), the time dependent one- or two-group
diffusion equations have proven to be a reliable tool for amalyzing reactor
accidents. After appropriate fuel assembly homogenization procedures1 have
been performed, the analysis of an LWR involves the solution of a diffusion
problem over a series of large, homogeneous regions; generally as large as
20 cm on a side. To obtain accurate solutions to this problem using finite
difference methods, many spatial mesh points are often used. In general, the
number of mesh points required in any one dimension to obtain accurate finite
difference results is proportional to the number of neutron diffusion lengths
present in that dimension of the reactor. The neutron diffusion length for
group g neutrons is defined as?

Lg = \’XEg (I.1)
a

g

The diffusion length for thermal neutrons in an LWR can be as small as 2.5 cm
for some cases. Therefore, due to the large number of unknowns in each dimen-
sion, a multidimensional analysis of an LWR using finite difference methods
can be very expensive.

In the last few years, considerable success has been obtained in devel-
oping so-called nodal methods for solving multidimensional LWR diffusion
problems. For many years, nodal methods comprised a variety of schemes for
solving the diffusion equations in which a set of "coupling coefficients"
were defined which relate the fluxes in two adjacent regions to the current
at the interface between the regions. These "coupling coefficients" were
often evaluated from fine-mesh calculations and then used for a variety of
reactor conditions. Although the coefficients may give acceptable results
for one reactor configuration, it is dangerous to extend their use very far
beyond the original reactor configuration used to calculate them. The nodal
schemes which have been developed recently, however, differ from the above
methods in that the "coupling coefficients" are rigorously defined in some
way.3?425°728%9  The methods also differ in that some of them3’ use the
partial neutron currents as the final unknowns for which a solution is re-
quired. However, the common thread among all of the above schemes is that
polynomial expansions are used to solve the diffusion equation on a local
basis (within each region), and these solutions are used to define the coup-
ling between one unknown and another. In fact, this same definition in-
cludes finite element methods.® As Werner has pointed out,“ the newly
developed nodal schemes are variations on the finite element method in
which the weight functions are defined in ways other than the conventional

Galerkin scheme.
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In Chapters II and III, the development of a nodal scheme for solving
multidimensional, time-dependent one- or two-group neutron diffusion equat%?gs

is reviewed. This method has been previously reported in the literature’’8’2,
This report documents the following:

a) An improved time dependent strategy which reduces the computing

time spent re-calculating the coefficient matrices.

b) A new representation of the transverse leakage term which yields
significant improvement in spatial accuracy.

c) A reference solution to Benchmark Problem 14-A1,10 as well as
coarse mesh solutions from the methods developed here.

The development of the method in one spatial dimension is shown in Chap-
ter II. The extension of the method to two~dimensional time dependent prob-
lems is shown in Chapter ITI. The results of several benchmark problems are
given in Chapter IV. Conclusions based on the above benchmark problems, and
recommendations for future study are presented in Chapter V.



II. DEVELOPMENT IN ONE DIMENSION

A. Introduction

In this Chapter, methods for solving the one-dimensional diffusion
equation are discussed. The static diffusion equation is integrated over
each homogeneous region to yield the integrated nodal equation. To solve this
equation, auxiliary relationships between the fluxes and currents are neces-
sary. These relationships can be derived in various ways. Two derivations
are discussed in this Chapter; the first based on response matrices, the
second based on an analytic solution to the diffusion equation over each homo-
geneous region. It is shown that the analytic solution technique is simply
a special case of the more general response matrix method. Finally, a tech-
nique for solving the one-dimensional, time-dependent diffusion equation is
described.

B. The One-Dimensional Diffusion Equation

The one-dimensional, time-independent diffusion equation is

-4 01 & e60) + (0] (6]

1 T
= £ X] DL 001 (I1.1)
where
[D(x)] is a diagonal GXG matrix consisting of the diffusion
coefficients
(¢(x)] is a column vector of length G consisting of the neutron
fluxes
[ZT(x)] is a GxG matrix consisting of the absorption and scat-
tering cross sections
{x] is a column vector of length G consisting of the fission
spectrum
[vzf(x)] is a column vector of length G consisting of nu times the
fission cross section
G is the number of neutron energy groups.
The one-dimensional reactor configuration R = [0,X] is divided into a par-
tition m: 0<xi’ . . .<xI = X, with the restriction that any region

11
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X £* 2%

(II.1) is then integrated over x, < x < x

be homogeneous. Eq. 1 i+1:

[Jx,,,)] = D)1+ by [ZTi] [o,]

i+1

1 T (11.2)
= 1h [x] [szi] [¢i]

where
d
Bl = - D] 5 (660
x=xi
x
.1 = l—/ To0] dx
i h
X

w
]
~~
¥
-
]

i i’ i+l

1 *1™™

Equation (II1.2) shows that the average fluxes in adjacent regions are depen-
dent on the net currents at the interface between two regions. Therefore, it
is desired to obtain a relationship between the average fluxes [¢ ] and

[¢ ] and the current at Xy [J(X ).

C. Derivation Based on Response Matrices

+ -
Let us define Jgi and J i as the partial currents in the +x and -x direc-

tions at x . The corresponding G-element column vectors of group partial
currents are therefore [Ji] and [J ]. Then for region Ri in a vacuum, the

transmission matrices [T’] are defined as



+ o+ +
(1]) (31 = (3,
(I1.3)
(1) 9] = 13,]

These results can be generalized such that they are defined over an arbitrary

distance between Xy and xi+1 (or xi and xi—l)° Let x be any point in the
interval [xi—l’ xi+1]. Then Eqs. (II.3) above become
+, o +
[T (x)] [Ji] [J (x)] for xi <x=< xi‘l‘l
(11.4)
[T (x)] [Ji] = [J (x)] for X, SX X
+
The reflection matrices [R;] are defined as
+. .+ -
(R] (3] = [3])
(I1.5)
(R,] (371 = (3]
i i i
In the general scheme, Eqs. (II.5) become
+ +. -
(R (x)] [Ji] = [Ji] for xy <x 5_xi+1

[JI] for x <x<x

[R @] 3] i1

i

In Eqs. (II.4) and (II.6) above, the point x represents the location of the

point xi+1 or xi—l; whichever is applicable.
For Ri imbedded in the reactor, the following matrix equation can be
derived:
+ +
(3 (5 ()]
S = R (IL.7)
(3,14 [J (x)]
for x, < x < x . The matrix [R(x)] can be shown to be

i i+1
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[ttt -t @017 R @)

[Rx)] = (11.8)

Kol MTwl™ R @I 1™ 1R )
+HT (x)] ]

: between the partial cur-
ations (II.7, 8) show that a relationship exists
fzzts at x and,the partial currents at x which depend only on the material

properties in the region (xi,x).

A P-1 expansion of the angular flux at point x1 gives the following

relationship:
+
2[(1] 2[1] [(J,1
Ay I ]t (11.9)
(3,1 [I] -[1] (3,1
Therefore, Eq. (II.7) becomes

[¢,] 2011 2[1] 21 21 | eeor

[R(x)] (11.10)

1 1
[J,] (1] -[1] e - S1I) [HI@x)]

for X S X< X, Let us re-write Eq. (II.10) as

i+1’

= [s(x)]
[Ji] . {J(x)]

[, ] [¢ (x)]J
(1I1.11)

Equation (II.11) is then multiplied by [S(x)]-l. Assuming that the inverse
exists, we have

-1 [¢i] [¢(x)]
(5G] = (I1.12)
[Ji] [J(x)]
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If Eq. (II1.12) is integrated from x

to x » the following equation is ob-
i+l
tained

i

(¢,]
[u,] il = n
[Ji]

[Ei]

[Eil

1 (I1.13)

where

[¢,] 141 [lo 0]
s dx

hy | =
[3,] [3(x)]
i

(U

*i+1 -1
- S [5G ax

x5

Equation (II.13) defines a relationship between the average properties in

(xi, x ) to the values present at point xi. To obtain a similar relation-

ship between the properties at x, and the average properties over (xi—l’ xi),
we return to Eq. (II.11) with a change in subscripts:
Iy (¢ (x)]
= [S(x)] (I1.14)
(3,1 [3(x)]
where x, _, < X < X, . Denoting
[S(h,_)] = [5(x)]
X=X,
i
we find that Eq. (II.14) becomes
-1 [¢,] [¢(x)]
[s(x)] = [S(hy_;)] = (11.15)
(3,1 [3(x)]

If then Eq. (II.15) is integrated from X4 1 to Xy We obtain:
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[o, ] (o, ;]
O I AL I I
[3,] 3,41
where

i -
W, 1 = / (517! ax [5(hy_p)]

*i-1

Let us rewrite Eqs. (II.13) and (I1I.16)

[o, ] (o]

w, | Y] = n _i]

(3,1 (3,1
' o] - 6, .1
Y B N R [—i_l]
[J;1 (3,4

Each Eq.
top G equations in the following way:

1,1 1,2 - -
[0;°7) [o,] + (U771 (3] = b, [§,]

1,1 1,2 B —

Multiplying (II.17) by [U 1] 1

exist), we obtain

-1 1,1.-1

(6,0 + (o7t

1,2
u;*%1 9]

1,1.-1
1]

1,1
[¢i] + [wi Iwi 1] [Ji] hy [w?

(II.13) or (II.16) represents 2G equationms.

and (II.18) by [Wi:i]

P L Bl O

(11.16)

(I1.13)

(II.16)

Let us write only the

(11.17)

(11.18)

-1
(assuming the inverses

(e,
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Subtracting the above two equations gives

1,1.-1 1,2

1,
i Bl i W E R I Uy

1.-1 1,2
(v R U R

1,1,-1

1,1.-1 — 1 -
=hg (U717 [6g] - hy o [WTT 7 oy ]

or

) = oyt o - wph Tt )t

1,1.-1 — ., _ 1,1,-1 —

Equation (II.19) shows that a relationship exists between the current
[Ji] and the adjacent average fluxes [¢i_l] and [¢i]. This relationship

involves only the material properties in these adjacent regions. The only
additional assumptions made in this derivation were that a P-1 expansion was
made at the interface (diffusion theory is valid at that point), and that the
necessary inverses exist. Therefore, the response matrices could be evaluated
in any conventional manner, and the global problem solved within a nodal

framework. :

D. Derivation Based on Analytic Solutions to the Diffusion Equation

In this Section, analytic solutions to the diffusion equation will be
used to derive the coupling relationship between neighboring regions. Let

us first write Eq. (II.1l) in P-1 form:

L el + ([p] Bl = Fx] BN 6] (1L.20)

d -1 -
i [¢(x)] + [D(x)] ~ [J(x)] 0

and let us further define

[e(x)] = col {[6(x0)], [Ix)]} (11.21a)
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(o1 [p(x)]~t
= (1I.21b)
[N(x)] ) .
(L)1 - & X1 DL @1 (0]
Therefore Eqs. (II.20) can be written as:
(1I1.22)

4 [px)] + [NGK)] [6(x)] = 0O
dx

This equation can be solved analytically over a homogeneous region R:I. to give:

-[Ni] (x-xi)
[¢(x)] = e [¢(xi)] (11.23)

Integrating (II1.23) from X, to X 41 dividing by hi’ and rearranging yields:

-IN T By

) by [o,] = |[1] - e [(x,)] (11.24)

where

_ 1 Xi+1
[<I>i] = q/ [9(x)] dx
X,

1

and [Ni] is the matrix [N(x)] for x ¢ R..

i
Similarly, we can integrate Eq. (II.23) in the negative direction over
homogeneous region Ri—l to obtain
— [Ni-1] hi—1

N Comparing Eqs. (II.13) and (II.16) to Eqs. (II.24) and (II.25), we observe
that
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- [N,1h
-1 i’ 1
(vl = [N [I] - e (11.26a)
-1 [N1-1] Ry1
w,_,1 = - Iv_,] (1] - e (11.26b)

Therefore, the matrices [Ui] and [wi-1] are made up solely of cross sections

and mesh lengths of regions Ri and Ri—l’ respectively.

To continue the development, the following trigonometric identities are

recalled:
-X
l1-e = 1 - cosh x + sinh x
l—ex = 1 - cosh x - sinh x

Substituting these relationships into Egqs. (II.24) and (II.25), adding the
resulting equations together, and rearranging gives:

(siph L (8,1 hy) {1] - cosh [N] b} [¢(x)]

+ [0(x)] = (sioh ' [N h) NI h (7] (I1.27a)
(stan™? [, 1 b)) {[1] - cosh [N, 1 h,_ }leGx)]
- [0x)] = - (sinh N,_,J b, ) N _ 1h [o, ;] (1I1.27b)

Now recall the additional trigonometric relationship
. . -1 X
(sinh "x) (1-cosh x) = - tanh‘E
Adding Eqs. (II.27) together, and using the above relationship yields:

-(tanh [Ni] hi/z + tanh [Ni_ll hi_l/Z)[¢(xi)]
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- -1 y (11.28)
(sinh [Ni] hi) [N1] hi [¢i]
-(sinh-l [N, .1h, )IN, .1h ©, .1
i-11 M4-17 Yi-1t Ti-1 Vil
Let us now define
(al] = (tamh [N,] B /2)
17 M
i (1I.29)

-1
(B7] (sinh [Ni] hi) [Ni] h,

. i
We note that Eq. (II.28) represents 2G equations; therefore the matrices [A7]
and [B"] are 2G x 2G matrices. Let us denote these matrices as being composed
of four blocks, each block being a G X.G matrix. iWe observe, based on the
definition Eq. (II.29), that blocks [Al l] and [A2 2] are zero; and blocks
. . ’ ’
[Bi 2] and [B; l] are also zero. Thus, writing only the top G equations of

(I1.28), we obtain:

_ il 1 —
[3Ged] = = (A7, + &) ,170 [B] ;1 [4]

1 —
* [Al,z * A1,2] [31,1] [¢1-1] (1II1.30)

Using Eq. (II.30) and its counterpart at X410 Eq. (II.2) can be transformed

into a three-point difference relationship for the average fluxes, as follows:

i1, 1 -1 d-1, —
L T IS TOLI YT I C P

+ [A7 .+ A

i-1 i - -
A, v Al e ]+ AT 1}
2

[B1 1! [¢ ]

= 1 T
hy [zti] [6,] = ¥h, [vzfil (11.31)



Equation (II.31) is a matrix equation which can be solved by conventional

numerical methods. The values of [Ai 2] and [Bi 1

] H
A. The solution of this equation will yield the exact values of the average
fluxes in each homogeneous region.

] are derived in Appendix

Although Eq. (II.31) has the conventional three-point form, there are two
items which make the equation different from the convetional finite differ-

ence equations. First, the calculation of the matrices [A; 2] and [B; 1] is
H] 1]

performed by solving the diffusion equation analytically over each homogeneous
region. To solve this equation, the eigenvalue A of the global problem is
required. Therefore, Eq. (II.31) is non-linear, in that improved values of

A are used to re-calculate the coefficient matrices at various times in the
static iterative process. Secondly, the coefficient matrices resulting from
the substitution of Eq. (II.30) into Eq. (II.2) generally have the same struc-

ture as the matrix [Zt(x)]— %—[x][vzf(x)]T. Therefore, the leakage terms

introduce additional group-to-group coupling terms other than those already
present due to fissioning and scattering. This is unlike finite difference
methods, in which the leakage terms only couple fluxes of one group together.

Comparing Eq. (II.19) to Eq. (II.30), we observe that

(4 ;) = - o7t g

[Ai’zl = [Ui’ll']L [01’2] (11.32)
therefore, if regions Ri—l and Ri have identical compositions, then

el A I R

This demonstrates that the matrices [Ui] and [wi—I] are simply the negative
of one another.

E. Extension to Time Dependent Problems

The time-dependent, one-dimensional diffusion equations are

VT 2 )] = 2 meanl B pean) - [f,60] [h6,e)]

21
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K
T
*+ Ix,] (1-8) DI )] [eGx,0)] + kzl [xgi] Ay G ot) (11.332)
9 T
Y Ck(x,t) = - Ck(x,t) + 8, [vzf(X.t)] [¢(x,t)] (1<k<K) (I1.33b)
where
[V] is a diagonal GxG matrix containing the neutron speeds
[x_] is a column vector of length G containing the prompt fission
P spectrum
[xdk] is a column vector of length G containing the spectrum from

delayed group k

[vzf(x,t)] is a column vector of length G containing the critical
value of nu times the fission cross section

Integrating Eqs. (II.33) over Ri’ we obtain:

=13 — —
hy[V] 7 57 [ ()] = = (3, (O] + [J(0)] - b, [zTi(t)l [, (t)]
T — X -
+hy (178) [x] [vzfi(t)] [6,(0)] + kzl D gpd A T 5 (® (II.34a)
9 —= — -
3t Ck,i(t) = A G,i(B) T hBy [vzf'(t)]T [¢,(6)] (1<k<K)  (IL.34b)
1
where
_ 1 [l
[p,(B)] = h_-/ [6(x,t)] dx
i xi
3,01 = = (6,0 & [pex, 0]
x=xi

[ZTi(tn = [l G0)]
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_ X141
Ck,i(t) = f Ck(x,t) dx
X4

To obtain a relationship between the net currents and the average fluxes,
Egs. (II.33) must be solved analytically over each homogeneous region. The
time derivative and delayed precursor terms complicate this solution, since
in general they are not known as a function of x. For assembly-sized mesh
spacings, it has been found possible to use the following approximations over

the course of a time step. For each region Ri = (xi, xi+1) we assume:

e UCIOEEN TR I TICRO) (11.35a)
0
Y Ck(x,t) ® ki Ck(x,t) (I1.35b)

where [wp i] is a diagonal GxG matrix. Inserting Eqs. (II.35) into (II.33)

1
and rearranging, we obtain

] ]
.3—}-{- [D(X,t)] -a_x [¢(X,t)]

+

{1 01+ lo) (1} 660

K A B
‘[xp] (1-8) + ] [xgl (;%r),

=1 dki ]
T
» GG [0GLt)] = 0 (1I.36)
If [mp i] and ®qeq 2Te known for each region R,, Eq. (II.36) can be solved

b}
analytically at a fixed time t as shown previously. From this analytic solu-
tion, an expression of the form of Eq. (II.30) can be obtained. The resulting
equation to be solved is then
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-1 i i+1,-1 i -
17 + 47 + A1,2] [B1’1][¢i(t)]

i i+1.-1 itl, — - Y
+ A, AT, (B 1] [0y,,(8)] — by [ZTi(c)l [¢, (€)]

K
T — —
* by (1-8) Ix,] V] g, (D1 [0y (01 kzl [X g A Cp 1 (8 (11.37)

Equations (II.37) and (II.34b) can be solved using any conventional numerical
method. It should be emphasized that the approximations (II.35) were used
only to determine the coupling coefficients; as such they are not expected to
introduce a very significant error into the overall solution. The omegas are
calculated from ’

1 -—nt+l /-—n
= 1
“pgi AT " (¢gi 4’gi>
-+l /=n+l
3
n <Ck,i/ck,i>

where AT is the time step size, g is the energy group index, and n is the
time step index.

I>|P-l
L]

dki

F.  Summary

In this Chapter, a method for solving the one-dimensional, steady-state
or transient diffusion equations has been developed. Due to the algebraic
complexity of the method (see Appendix A), the scheme in its present form is
restricted to one- or two-group problems.

Results of static and transient test problems’ show that the method is
very accurate. For static test problems, the exact result is obtained for
both the eigenvalue and eigenvector. For transient test problems, very
accurate results have been obtained for spatial mesh regions as large as 20 cm
for LWR's. The approximations in Eqs. (II.35) seem to be adequate for rea-
sonable mesh sizes encountered in LWR analysis.
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The method used to derive the exact coupling relationships is based on
an analytic solution to the diffusion equation. These relationships have
been shown to be equivalent to a response matrix derivation of the same pro~
blem. In fact, it has been shown how response matrices can be used to cal-
culate coupling coefficients for the nodal solution scheme. This would entail
calculating integrals of the reflection and transmission functions. Further

work is necessary to develop an efficient computational scheme based on this
concept.
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III. DEVELOPMENT IN TWO DIMENSIONS

A, Introduction

In Chapter II, a method was developed which produced exact difference
equations in one dimension. In two dimensions, it 1s not clear that exact
difference equations exist, or what their matrix structure would be if they
did exist. The extension to two dimensions may be performed in two different
ways. The first technique is to assume the neutron flux has a multidimen-
sional representation. Some examples of this technique are the finite ele-
ment method,® and the method of Aoki and Tsuiki.!! The other approach is to
assume a one-dimensional representation of the neutron flux. Some examples
of this are the Nodal Expansion Method,3 and a nodal method based on re-
sponse matrix considerations.5’? 1In the current method, the second approach
will be taken. Therefore, the one-dimensional solution to the diffusion
equation will be retained, and an estimation of the "transverse leakage"
integral required. This derivation is given below.

B. Two Dimensional Derivation

Let us begin in two-dimensional x-y geometry, with a region R defined

R = [0,X] x [0,Y]
and with this region divided into a partition

» € ¢ 4 « <X = X

Tt 0 = x I

1

0=y1,<-.u<yJ=Y

We assume that any rectangle defined by the above partition is homogeneous
The two-dimensional diffusion equation is:

9 9
~ o DT 5 b - D] & ey

+ [ZT(x,y)] [p(x,y)] = %[x] [vzf(x,y)]T [¢(x,¥)1] (I11.1)

where the terms are defined analagously to those in Eq. (II.1).



When this equation is integrated
obtain:

over (xi, b4

i+l

h, (1J 1-1. )+n, (13 1 -3 ]
] < X141, xi,j> 1 ( V1,541 yi.j)

- 1
+ hyh, [ZTi’j] (¢, ;1 = ¥ by,
where
hy = Xy T
By = Yy Ty
_ 1 Y541 Xi41
g5 = oy f / [
[Ztij] = ([ ]
X € (xi, X
y € (yj, y
y.
. 1 3 jt+l
[in 1= - [Di,j] ax/
>3 hi .
h|
X
1+1
1 2
W, 1= -%*m 1—/
Y4,j h, "1,j° 3y
*5

(x] v}, 1
Ei3

X,y)] dxdy

)
)

i+l

j+1

[¢(xiaY)] dy

[4’ (x’yj)] dx

(¢,

1,3

.l

) and (yj. yj+1). we

(I1I1.2)

The remaining step is to obtain a relationship between the net currents and
the average fluxes. This will be accomplished by using the analytical pro-

cedure derived in Chapter II.
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To illustrate this procedure, let us find a relationship b?tween the x
directed net currents and the adjacent average fluxes. To obtain the differ-
ential equation which must be solved analytically, we intefr:ie Eq. (II.1)
over (yj, yj+1) and divide by hj' For X ¢ (xi, xi+1) we obtain:

y
i+l 32

32 1 d
_[Di,j] 3z [¢j(x)] - [Di,j] ) Y 252 [¢(x,y)] dy

+1ly 16,61 = X)L 118560 (111.3)

1,3

where

rIH

[¢j(X)l =

Yi+1
/ [6(x,y)] dy
5
Y5

Equation (III.3) has the same form as the one-dimensional diffusion
equation, with the exception of the extra integral representing leakage in
the y direction. To solve Eq. (III.3) analytically, this integral must be
approximated in some manner. Two possible approximations are:

i) Assume the leakage in the y direction is proportional to the flux in the
x direction.

ii) Assume the leakage in the y direction has a low-order polynomial repre-
sentation.

Assumption i) is the conventional separability assumption. Results
using this asumption have been reported in References 7 and 8. For many LWR
problems, the separability assumption leads to significant errors. It has
been demonstrated in the above references that assumption ii) is preferable.

The most complete study of the various altematives within assumption ii)
has been made by Wagner.3 In this study, the following functional forms of
the leakage integral were studied:

a) The leakage integral is a constant (flat across the node)

b) The leakage integral is a linear function across the node

c) The leakage integral is a quadratic function across the node.
Assumption a) has been studied in detail in Reference 3 and by this author.

For many practical problems it yields acceptably accurate results. However,
for some extreme test problems, the results are not acceptable. Therefore,



a higher order approximation is desired. In References 3 and 5, the quadratic

approximation is shown to provide excellent results for all test problems
attempted. However, Reference 3 shows that approximation b) also provides
acceptably accurate results for the same extreme test problems. Therefore,
it may not be necessary to use as complex a representation as assumption c).

In References 3 and 5, the information required to construct a quadratic
approximation to the transverse leakage integral is obtained by considering
the leakage values over three adjacent nodes. Therefore, although the leak-
age is approximated as a quadratic function within each node, the same infor-
mation is used to construct more than one of these quadratic functions.
Therefore, it cannot be said that the quadratic approximation to the trans-
verse leakage integral is 'complete', since not enough independent pieces of
data are available. However, the addition of a modulation on the basic flat
shape (even though approximate) appears to significantly improve the accuracy
of the results.

In view of the above arguments, two approximations to the transverse
leakage integral are developed here. The first is the constant (or flat)
leakage approximation. The second is the '"two-step'" approximation; where the

integral is assumed to be flat over each half of the node, however the level

of the constant function is different on the left from that on the right.
This approximation was chosen instead of assumption b) above since the anal-

ytic solution of the diffusion equation is made less complex.

Let us write Eq. (III.3) in a form analagous to Eq. (II.22):

L e@)] + N] 6] = [L(0)] (II1.4)
where we will specify the functional form of [L(x)] later, and
[0()] = col {601, [3,(0]]

= - 4
[Jj(X)] = [Pl 4 [¢j(x)]

(L] = col {[0], - i~ [L, (0]}

J
Yi+1 52
[Ly(x)] = - [Di,j]‘/;. 292 {¢ (x,y)] dy
3

The general solution of Eq. (III.4) at any point x is
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- [N} (x-xi)
[2(x)] = e [o(x)]
-[N] [N]x”
+ e xf e [L(x")] dx” (II1.5)
Xy

Over the interval R, € (xi’xi+l)’ let us approximate [L(x)] as follows:

[Ly,4

(L(x)] =
]

X < X

Ly 3 X472 < i+1

This approximation is the "two-step'" approximation. We will defer at present
a discussion how the values [Ll i] and [L2 i] are obtained. The flat leakage
H] b

approximation will simply be a special case of the two-step approximation in

which [L(x)] = [Ll,i] = [L2,i]°
Equation (III.5) is next integrated from Xy to xi+l and divided by h,
to obtain: 1
X
_ 1 i+l -[N](x—xi)
[<bi] = h_l / e [Q(xi)] dx
%y
X
L L

=2

x1+1 -[Ni]x [Ni]x’
f e / e [L(x")] dx"dx
i X X

where
i1
1
e, = = [0(x)] dx
i
Xy
h = x - X



Next, we insert the above approximation for [L(x)], and carry out the required
integrals to obtain:

- [N, Iny —
[1] - e [0(x)] = [N In [2,]

hi
h - ~[N;]-=
-l—; (11 - 1™ ({11 e 12 )} Ly 4]

h
-[N, 12 -[§,]h

- [Ni]_l '[1] —2e 24, 1 i} L, 4

i
h _ -[N, 1=
-l-—; [1] - [N1] 1 <[I] -e i 2>} [Lz’i] (I11.6)

Next, integrate Eq. (III.5) from x to x

i-1 i’ and divide by h
we define [L(x)] as

i_1; where

[

<

Ly i1 X1 SEZX 90

[L(x)] =

Ly 4-4] X1/ $X2H

After the required integrals are carried out, the following result is obtained:

[N, .]h
i-1"i-1 _ -
{[I] -e ] [¢(x,)] - [N 1 b, [o, ]
h
i-1
h v, .1 ==
i-1 -1 i-1 2
+{-T (1] + [N, _,] ([I] - e )}“‘2,1-1]
h
i-1
Wyl =3

te 2,1-1]

- N, .]h _
- Ny, 1‘[11 - 2e -1 1][L
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h _ v, _,1 =
i iGN L <i11 -e T >}[Ll,i-1]

l-e = 1 = cosh x + sinh x

l1-e = 1 - cosh x - sinh x

Making these substitutions, we obtain from Eq. (III.6):
-1
(sinh = [N,] b)) {[1] - cosh [N;] b }[0Gx,] + [0(x)]

= (sioh[NIh) N1 b (3]

_ h, ) -[n, 1
- (sinh l[Ni]hi){—;ﬁ (1] - [N1] 1 <[1] -e i 2>}[L1’i]

hi
SERE —[Ni]hi]

-1 -1
- [Ni] (sinh [Ni]hi) {[I] - 2 imz, e [Ll,i

h

_ h, - [, 152

_ 1 i _ -1 i'2
(sinh [Ni]hi) l—z [1] [Ni] ([I] -e )}[Lz,i]

and from Eq. (III.7):

-1
(sinh™ [N, Th, ) [[11 - cosh[Ni_llhi_l} [0Gx)] = [0(x)]

= - (sioh TN, TRy ) Ny by (@)

- h _ [N
+ (sinh l[Ni_l]hi_l)’% (- v 17t <[1] e 1l

]

(1I1.7)

(III1.8)



1-1

- v, 3l N In
- Ny ] “(stah 1“":L—l“‘i—l) l[” -2e HO2 4. U [Ly,1-1!

-1 hi-1 -1
+ (sioh T[N, _,]h, J) {—= (1] + [N, _.]

h
145t

. (kI] - e ) M R (1I11.9)

Equation (III.8) and (III.9) are then added together, using the additional
relationship

(sinh—lx) (1-cosh x) = - tanh %

to obtain:
h h
i i-1
- (;anh[Ni] 7+ tanh[Ni_ll 3 ) [¢(xi)]

- (etmh (N Jh) N1 b (0] - (simh V[N,_ b, DIN, 1 h (]

i
h -[N 1=
-1 i -1 i° 2

hi
-IN,=  -IN]n
i’ 2 +e i i}'[L

]

1,i

[Ni]-l(sinh_l[Ni]hi) ‘[1] - 2e

h

i

h _ ~[N, ]
(sinh_l[Ni]hi){—; (1] - w17 ([I] —e * 2)}&2’11

hi-l

h _ [N, 1=+
+ (sinh T[N,  ]h ){1—21 (1] + N, _,1] ! <[11 -e T2 )}“‘2,1—1]

i-1" i-1
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- [N

i-1

[N, _,] [N, _,]h

-1 2, il 1—1}[L
i-1

17 (atan M (v, Jby_3) {[1] - 2e

h
- - -1
+ (sinh 1[Ni_l]hi_l){—i—2l (1] + N,_,]
[N ]Ei:l
'<[I] - e 171 2 >}[L1,1-1] (111.10)
Next, we use the relationships
= 1
[Ls,i] =3 {[Li’i]+ [Lz,i]} (III.11)
I § _
Ly, = 3 e, 4 [LZ,i]}
or
[Ll’i] = [Ls,i] + [Ld’i]
[L,,3] = [Lg i) = [Ty 4]

Equation (III.10) then becomes:

hy h,_,
- (tanh[Ni] 7+ tanh [N, ] 1—2—> [0 (x)]

I'h ) [N

- N ¢ - .. =1
(sinh [Ni]hi) [Ni] h1 [Qi] - (sinh [Ni—l -1

i-1 i-1
-1 -1 - [Ny In
- (sioh ~ [N,] b)) {hi[I] - [N,] <[1] I

(L, .1l

h
- _i _
[N,] [Ni]hi
d,i

- [Ni]-l (sinh_l[Ni]hi) {[1] —2e T2 4
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[N, .]h
-1 -1 i-1"1-1
+ (sinh “[N,_,]h, ) {hi_l[I] + [Ni_ll ([1] - e >}[Ls’i_11

h
(N, _,] 1;1
+ [N

-1 -1
g4-1) (sinh T[N, . Th, ) {[I] - 2e

[N, .]h
1-1"71-1
+e } Ly 4oy (II1.12)

At this point, some further algebraic manipulation of Eq. (III.12) is
required. The following definitions can be made:

h

i i
tanh [Ni] 2 (I1I.13a)

[a]

(8']

-1
(sinh [Ni]hi) [Ni]hi (III.13b)

Next, the term multiplying [LS i] will be rearranged. Let us write the tem

- [N.]h
-1 -1 i’ i
- (sinh [Ni]hi) {h1[I] - [N1] <[I] - e ),

using the relationship

1 - e-x = 1 - coshx + sinhx

This term becomes:

- (sinh_l[Ni]hi) hi[I] - [Ni]_l' QIJ - cosh[Ni]h%) + [Ni]—l

.

Using the nomenclature of Appendix A, this term can be shown to be:

-1 -1
E 0 0 H21(h) E11 0 hi 0

-1
0 E glz(h) 0 0 E 0 h

22
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where [K(h)] = cosh [Ni] hi'

We note that this expression (which represents 2Gx2G matrices) will
multiply a column vector whose first G entries are all zero. Therefore,
the entries (1,1) and (2,1) in the resulting expression above are not needed.
In addition, only the top G equations will be used in the final expression.
Therefore, only element (1,2) is required. We may then reduce the original
term above to

[0'] = - (simh '(N;In) b+ [N, (111.130)

where the (1,2) element of Eq. (III.13c) is the same as the (1,2) element of
the original expression. An analogous simplification of the term multiplying
[Ls i—1] reduces to the same form as Eq. (III.13c) above. Therefore,

Eq.’(III.13c) is correct in general for all i.

The terms which multiply [Ld i_1] and [Ld i] do not at first appear to
represent the same term; however after simplification their (1,2) elements
can be shown to be the same. Important in this simplification are the
trigonometric relationships

. -1 X . X, 2 1

(sinh "x) (l-cosh E-+ sinh E) = E-tanh-§ (1-tanh f)z
-1
(sinh - X sinhH? . L X 2
x) (l-cosh > s inh 2) =3 tanh-z (1+tanh %9
The final result is

) h 2 .

i, _ -1(1 i b
[F7) (N,] <2> <tanh[Ni]—2> <[1] - tanh[N_] —Z—) (III.13d)

The expressions Eq. (III.13a,b,c,d) are evaluated in Appendix A for both one-
and two-neutron energy groups.



- ([Ai:;] + [Ai’zl) (3] = (8) 11 (8,1 - (8771 (9, ]

i i-1
- [0} ,] Lk 1+ [0]7,) [Tk, ]

i-1
(I11.14)

- [Fy ) [Lky 1] = [F)7, [Lky o]

d,i-1

where the [Lk] terms represent the lower G entries in the vector [L].

Equation (III.14) is a matrix equation relating the x-directed current
at Xy to the adjacent average fluxes. In addition, it can be seen that the

current at X, depends on the y-directed leakage in the adjacent regioms.

Therefore, if Eq. (III.14) is substituted into Eq. (III.2) for both the x-

and y-directed currents, the current terms would not be completely eliminated
from the equation; as was the case in one dimension. Thus, in two or more
dimensions, the equations for both the average neutron fluxes and the currents
must be solved simultaneously. In the next Section, the matrix structure of
the resulting equations will be shown.

C. Matrix Structure of Equations

Let us rewrite Eq. (III.2) as follows:

hy(L, ~ 1+h [L~ 1+hh Ry 10 ]

1, 1,5 13 7Ty L
1 T —
=yl 1 ey ] (I1I.15)
1,
where
[L 1] = [J 1 -10J ]
*1,3 X141, 3 *1,3
L. 1 = [J 1 -3 ]
V1,3 Y1,341 1,3

From Eq. (III.1l4), we obtain
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+(

L

*1,3

-1

i,1i -
Cx’j] [¢i’J]

¢ oy 4]

1,i+1
[c>y ] [0441,4)

1 i,i-1 21 i,i K
+Kj_ (5] S (3] [ xs,i]
j X5] s i+1
1 1 i,i
-— [6 ] [Lk ] +— [6’,] [Lk ]
b ,i-l By %l *4,1
[Gi 1+1] [Lk ]
X,3 d,it+l
where
i,i-1. i-1 i -1 i-1
[C,y 1 7 <[A1,2] + [A1,2]> [B),,]
i,i i-1 i -1 1
(ci*h - {([Al,zl + [A1,21> + ([Al’zl + (4]
1,i+1 i it1.\ -1 i+l
[Cx,j ] = <[A1,2] + [Al,2]> [31,1]
ERE i-1 i -1 di-
e - QALZJ + “’*1,2]> (o)
i,i i-1 i \-1 1 i+1
(.5l = {<[A1,2] * “‘1,2]) * <[A1 2} + 1A

(III.16)



1,i+1. i i+1 -1
[Ex,j ] = <[A1’2]+[A1’2]) [Dl’zl

i,i-1 i-1
(65 1 = ([A1 7 [Al,Z]

1,1, _ ). i-1 i -1 i i+1,)~-1 i
[Gx,j]‘ = ‘ <[A1’2] + [A1’2]> + <[A1’2] + [A1’2]> }[Fl’?_]

i,i+1. i+1 -1 _i+1
An analogous expression holds for [L 1.
1,3

Substitution of Eq. (III.16) and the analogous expression for [Ly

into Eq. (III.15) yields:

i,i-1 _ Js3-1
SR ot W IR W el I O
_ h [ i,i+1 l1-nh [Cjaj"'l ]

Lt O 1184 51

+<hj[C ]+1;[CJ’J]+hh[z ‘]> [31’3.]

= Il [vZfi,le (%, 4]
- {[Ei T g R (£}]] SR (£, e, ]
S Gl W R Gy e ) Gl WU —
+ (517 e, 1 (e)°3) (e, 1+ (£} 3 ey ]

R
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»j+l

1 (III1.17)

]+ [ci 1 [Lk

- g3-3-1 ¢33 Lk ]
(6,73 1 [Lk ]+ 6’71 [Lky V4,141

Yd,5-1 s d,3

Equation (III.17) is solved in a conventional manner, using a fission
source iteration accelerated by the use of Chebyshev polynomials. The "inner'
iterations to solve for the average fluxes at each mesh point and outer
iteration are performed using the cyclic Chebyshev iterative method. Both
neutron energy groups (in two-group problems) are solved simultaneously.
References 7 and 8 contain a more detailed discussion of the solution techni-

ques.

The calculation of the terms [Lk] has not yet been discussed. Because of
Eq. (III.11), it can be shown that

[ka ] = [Ly. '] (III.18a)

(III.18b)

=
=
) S
[
—
3

Thus, the average leakage required in the x-directed analytical solution is
the average y-directed leakage; and the average leakage required in the y-
directed analytical solution is the average x-directed leakage.

To calculate the

[Lk. ] and [Lk_ ]
X4,1i Yd,3

terms, straight lines are drawn between the adjacent regions. The following
expressions are used:

=
=
e
H
N[

[L 1 - IL ]+F (L ] - [L
*4,1 { Yi-1,3 Yi+1,j X ( V4,3 [yi—l,j]

-F (L. 1-I[L ]
x_ ( Y1, Y441, 5 >} (III.18c)

Sd
[}
N | =

[Lk {[L ] - [L ]+ F (L ] - [L
4,3 *4,3-1 *4,3+1 Yo \ %43 [ xi,j-ll



+F L ]-I[L ] (III.18d)
Ye ( X3,3 Xy,4+1
where
+
e - Ry
+
xk h1-1 h1
1
+
o 24 hi+1
+
Xy hy by
h, +h,
F = =i _j-1
+
LR
1
P - ahy * By
+
Yy by hj+1

The overall steady-state solution procedure is then:

a) An accelerated fission source iteration is used to calculate the eigen—
value and eigenfunction.

b) At each "outer" iteration, Eq. (III.17) is solved to calculate the
average fluxes.

c) Equation (III1.16) and its counterpart for [L ] are solved to calculate
the new average leakages. i,j

d) If the two-step method is being used, Eqs. (III.18c and d) are solved to
calculate the [ka ] and [Lk ] terms.
d,i 74,3

As can be seen above, the calculational sequence at each outer iteration

involves both an iterative solution to determine the average fluxes, and the
calculation of the leakage terms. The matrix

hylC,] +hlC] + hihj[ZTi j]
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which must be inverted at every outer iteration (from Eq. III.17) is generally
relatively easy to invert, especially for assembly-sized mesh spacings. It

is common that only a few (two or three) cyclic Chebyshev iterations are re-
quired to invert this matrix. Therefore, about as much computational effort
is expended to calculate the leakages at every outer iteration as is expended
to invert the above matrix and calculate the average fluxes.

To accelerate the convergence of the outer iterations further, it is
possible to use Weilandt's method of fractional iterations.!? This method

is illustrated below for a simple problem. Let
1
[cl (o] = 3 [m] [4] (I1I.19)

be an eigenvalue problem. Then choose a value AS such that As > A. Then

subtract X—-[M] [¢] from the above equation to obtain
s

{te1 - 5= (a1} [o1 - (%-j—) [M] [4]
S s

Next, define

=1

o - - o) o1 = 2

s new

(M] [¢] (III.20)

?nstead of solving Eq. (III1.19), we choose to solve Eq. (III.20). This choice
is motivated by the following observations:

a) The spectral radius of the Jacobi iteration matr
matrix atrix is larger for the

{ter - & o)

]

then it is for the matrix [c].12 1n fact, in the limit of A = )
the spectral radius of s '
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{te1 - = o)
s

is one.

b) The dominance ratio (ratio of second to first eigenvalue) of the outer
iteration matrix in Eq. (III.20) is lower than that of Eq. (III.19). There-
fore, although the matrix to be inverted at each outer iteration is more
difficult in Eq. (III.20); it should require fewer outer interations to con-
verge. Therefore, Weilandt's method was implemented into the steady-state
solution in the following manner. At the beginning of the steady-state
solution, the user enters an estimate of the eigenvalue A. This estimate is
used in the calculation of the matrices (Appendix A). The search eigenvalue,
As’ is obtained from

1Y
1.t
A A
s est
where A is the input estimate, and W_ is a user input value (0 < W_ < 1.0).

The same value of A was kept for the entire steady-state iteration. The

s
convergence of Eq. (III.20) was accelerated by the use of Chebyshev polyno-
mials. At the conclusion of the steady-state iterative process, the eigen-
value A was calculated from

1 _ 1 .
A A A
new s
or
AneWAS
A = X B (I11.21)
new s

To investigate what value of W_ to use, a variety of runs were made using
the BIBLIS test problem (Section IV?B.4). Table I shows the results of this
study. The input eigenvalue estimate was 1.025. Although there are local
oscillations, Table I demonstrates that the Weilandt iteration is effective

in reducing the number of outer iterations, and the overall execution time.

As a result of this and other test problems, it was decided that the
factor 0.9 should be used for Wf as a general rule. In the case where the

user does not know to any degree of certainty what the final eigenvalue will
be, this factor should insure that A >A. If the eigenvalue is completely

unknown, a value of 0.75 can be used to be completely safe.



TABLE I. Investigation of Weilandt Iteration

Number of Execution

F‘:zti:nsl: e Outefu;l::::a‘::fons Inner/Outer Ti(.l;;of;;g;
0.0 (undef.) 47 2 1.044
0.2 5.125 48 2 1.088
0.4 2.56 41 3 1.042
0.6 1.708 44 3 1.077
0.7 1.464 35 3 0.857
0.8 1.280 33 4 0.881
0.9 1.139 23 5 0.665
0.95 1.079 22 6 0.702

For the test problems to be shown in Chapter IV, a Weilandt factor of

Wf = 0.9 was used. As with the BIBLIS case shown in Table I, this reduced
the execution time for steady-state solution by as much as 40% for those

problems.

D. Time Dependent Solution

The same techniques used in Section (II.E) are used in two dimensions.
The approximations (II.35) are used to derive an equation which may be solved
analytically as was done in the previous section. The time integration method
used is the fully implicit method. The same solution techniques are used as
described in References 7 and 8, with one major exception detailed below.

At each time step of a transient, it has been previously felt that the
coefficient matrices must be re-calculated; since the cross section and [w]
terms change during this transient. In Reference 7, 1t was shown that this
re-calculation of the coefficient matrices required a large percentage of the
calculation time of a transient; for some cases up to 55%. If the coefficient
matrices need only be re-calculated every two or three time steps, a signi-
ficant savings in execution time could be realized. It was therefore
attempted to re-calculate the coefficient matrices every n time steps during

a transient. The necessary changes to [ZT ] due to external perturbations

and thermal feedback are made every time s%é%. The results of these studies
show that the coefficient matrices may be re-calculated every three or four
time steps without a significant decrease in accuracy. Due to the success of
this scheme for even a very severe test problem, (see Section IV.C) it is
felt that a re-calculation of the coefficient matrices every 3 time steps is
adequate in the general case.
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IV. RESULTS

A. Introduction

In this Chapter, results from four steady-state and one transient, two-
dimensional benchmark problems are given. These problems are designed to
show the accuracy and efficiency of both of the methods developed here.

B. Static Benchmark Problems

Four static, two-dimensional, two-group benchmark problems are discussed
in this Section. They range from a relatively simple two-region problem to
a checkerboard-loaded PWR.

1. Two-Region Test Problem

This two-region problem first appeared in Reference 6, which dis-
cusses finite element methods. The geometric configuration and macroscopic
cross sections are presented in that reference.

In Figure 1, the inverse eigenvalues (1/A) for both the flat
leakage and two-step method are presented. Results are also given for Kang's
cubic Hermite polynomials. The results obtained from the two-step method are
clearly superior to those from the flat leakage method for this problem. The
two-step method and the cubic Hermite method are both able to give very
accurate results using a large mesh spacing. For all methods, an order of
convergence is shown. The two-step method shows a significantly higher order
of convergence than the flat leakage method; although it is doubtful that any
specific order of convergence could be proved mathematically to be expected
for the nodal schemes.

Cubic NODAL ANALYTIC METHOD
AX Hermite
Method Flat Leakage Two-Step Leakage
L/4 1.1134916 1.1118268 1.1135889
L/6 1.140943 1.1131629 1.1140013
L/8 - 1.1136451 1.1141208
L/16 - - 1.1142363
Order of
Convergence 3.2 2.0 2.5

Fig. 1. Eigenvalues (1/A) for Two-Region Test Problem
ANL Neg. No. 116-78-182
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2. LRA Benchmark Problem

This benchmark problem is representative of a BWR; and forms the
initial conditions for the transient benchmark problem described as Benchmark
Source Situation BSS-14 of Reference 10. Figure 2 shows the eilgenvalues and
errors in the initial power distributions for both the flat leakage and two-
step leakage methods. For both schemes, the maximum assembly power errors
are below 3%. The two-step method yields very accurate results for this pro-
blem; with the maximum assembly power error below 1%. For this problem, the
reference solution is taken as a two-step solution using a 3.75 cm mesh.
Steady-state runs using various mesh sizes have demonstrated the accuracy

of this solution.

1.328
2.6
0.6
(Normalized Reference Powers and Percent Errors) 2.161 1.621 |0.8465
2.8 2.3 1.2
0.8 0.6 0.2
Execution Eigenvalue (3) 1.852 2.051 | 1.679 |o0.9716
Time (sec)* 1.9 2.3 1.7 1.8
0.5 0.7 0.4 0.6
2.47 Reference 0.996360
2'55 Flat 0.996944
. Two-Step 0.996553 0.8643 | 1.152 1.339 1.422 }0.9325
0.4 -0.1 0.2 1.3 1.6
0.2 -0.2 -0.1 0.4 0.4
0.5524 0.6782 | 0.8432 1.022 1.221 | 0.8530
0.1 -0.3 -1.3 -1.1 -0.1 0.7
0.1 ~-0.1 ~0.4 -0.3 -0.1 0.2

0.4240 | 0.4921 0.6181 | 0.7826 0.9667| 1.173 |} 0.8268
-0.6 -0.3 -0.8 -1.9 -1.8 -1.0 0.3
-0.1 -0.1 -0.2 -0.5 -0.5 -0.3 0.1

0.3995 | 0.4067 | 0.4921 0.6705 | 0.9398 1.151 1.281 | 0.8672

-1.8 ~1.6 -0.3 -0.8 -1.5 -1.6 -0.9 —-1.0

-0.4 -0.5 -0.1 -0.1 -0.5 -0.5 -0.2 -0.3
0.6122 0.4402 | 0.4130 | 0.5118 0.7902 | 1.386 1.661 1.481 | 0.9242
-1.1 -2.6 -3.0 -2.7 -1.9 -0.1 0 1.4 -2.0
-0.2 ~0.8 -0.8 1-0.7 -0.6 0 0.1 -0.3 ~-0.5

*Times measured on IBM 370/168
Convergence -10 5 on pointwise flux

Fig. 2. Power Distribution for the LRA Benchmark Problem
ANL Neg. No. 116-78-158
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3. IAEA Benchmark Problem

This well known benchmark problem is representative of a PWR. The
geometric configuration and macroscopic cross sections are given in Reference
7. Figure 3 shows the eigenvalues and errors in the power distributions for
both the flat leakage and two-step leakage methods. For the flat leakage
method, the maximum assembly power error is less than 3%; for the two-step
leakage method, the maximum error is less than 2.0%. The eigenvalue is also
significantly improved by using the two-step approximation. The reference
soluti?g is taken from an exptrapolated series of finite-difference solu-
tions.

(Normalized Reference Powers and Percent Errors)*

0.585
Execution Eigenvalue 0.2
Time (sec)** A -0.3
Reference 1.02959 0.471 0.685 0.598
1.32 Flat 1.03001 -1.5 2.8 1.8
1.41 ° -0.6 1.6 0.7
Two—-Step 1.02970 * ‘
1.192 0.966 0.906 0.847
-0.3 0.6 0.8 0.6
Coarse Mesh Size 20 cm -0.1 0.5 0.3 0.1
1.469 1.345]| 1.179 1.071 0.976 0.692
-1.4 -0.7 0.8 -0.3 -0.1 -0.3
-0.3 0 0.3 -0.2 -0.2 -0.6
1.435 1.479 1.314}| 1.070 1.036 0.951 0.736
-0.6 -0.7 -0.4 0.2 -0.4 -0.4 0.1
-0.1 -0.1 -0.1 0.2 -0.3 -0.4 -0.4
0.746 1.308 1.454 1.210 | 0.610 0.935 0.934 0.755
-2.5 -0.2 0.6 0.1 -2.3 0.2 0.4 0.1
-0.5 -0.2 0.1 0.2 -0.7 0.1 -0.1 -0.7

*Convergence criteria is 105 on pointwise flux
**Times measured relative to an IBM 370/168

Fig. 3. Power Distribution for the IAEA Benchmark Problem
ANL Neg. No. 116-78-180

4. BIBLIS Benchmark Problem

The BIBLIS benchmark problem is representative of a PWR with a
checkerboard fuel loading. The specific configuration solved is the '"rods
out" configuration. This problem is a very difficult one to solve because
of the large mesh sizes (23 cm) and the checkerboard fuel loading pattern.
The geometric configuration and macroscopic cross sections unfortunately can-
not be published due to company confidentiality restrictions.
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Figure 4 contains the eigenvalues and errors in power distribution

for both the flat leakage and two-step leakage methods. For this problem,
the flat leakage results are not acceptable; with errors in assembly powers
as large as 8.9%. The two-step method, however, provides acceptably accurate
results; with the maximum error in assembly power being 4.0%.

(Normalized Reference Powers and Percent Errors)*

1.202 0.6863
Execution Eigenvalue 8.9 8.8
Time (sec)** A 4.0 3.1
Reference 1.02512
1.57 Flat 1.02585 1.124 0.9942] 0.8765
1.66 Two-Step  1.02549 2.1 4.5 7.7
1.1 1.9 3.5
1.161 1.039 0.9509] 0.7653| 0.5459
-0.9 -0.4 1.2 1.9 4.5
-0.2 -0.3 0.8 0.9 2.4
1.122 1.104 1.120 0.9232} 0.9308| 0.8240
-3.2 -2.8 -1l.1 -1.3 0.5 2.9
-1.2 -1.3 -0.3 -0.7 0.4 1.2
1.117 1.133 1.223 1.067 1.032 1.071 0.9694
-3.9 -3.9 -2.8 ~2.9 -1.4 0 0.8
-1.6 -1.8 -1.1 -1.4 -0.5 -0.2 0.1
1.090 1.101 1.242 1.220 1.088 0.9812 1.094 1.013
-4.7 -4.8 -3.2 -3.4 -2.8 -2.1 -0.3 0.6
-1.9 -2,2 -1.4 -1.6 -1.0 -1.0 -0.3 0

*Convergence criteria is 10 5 on pointwise flux
**Times measured relative to an IBM 370/168

Fig. 4. Power Distribution for the BIBLIS Benchmark Problem
ANL Neg. No. 116-78-181

5. Summary of Static Benchmark Problems

An examination of Figures 1 through 4 show the following general
trends:

a) The two-step method provides consistently better results than the flat
leakage method.

b) The two-step method generally requires no more than a 207 increase in
execution time over the flat leakage method.
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c) The two-step method provides results of acceptable accuracy for all the
test cases shown here.

C. Transient Benchmark Problem

The transient benchmark problem described here is Benchmark Source Situ-
ation BSS~14 of Reference 10. The geometric configuration and macroscopic
cross sections are given in Reference 10. For this problem, three solutions
are provided:

a) Coarse-mesh solution using flat leakage approximation
b) Coarse~-mesh solution using two-step leakage approximation
c) Reference solution using two-step leakage approximation.

The transient consists of the ramp removal of a rod over 0 < t < 2.0 sec.
Adiabatic fuel temperature feedback is included; it modifies the fast group
absorption cross section. The solution is followed to 3.0 seconds.

The reference solution for this transient has been calculated using the
two-step method using a 7.5 cm mesh. Steady-state results show that this
solution has an eigenvalue error of 0.005% and a maximum error in assembly
power of 0.3%. The reference solution required 2600 time steps to insure that
the temporal truncation error was small. The following time domains were used:

1) 200 steps with AT = 0.005 sec
2) 600 steps with AT = 0.0005 sec
3) 1200 steps with AT = 0.00025 sec
4) 400 steps with AT = 0.001 sec
5) 200 steps with AT = 0.005 sec

The matrices were calculated every time step. Figure B.l shows the assembly
powers and temperatures at various times during the transient. The core
average powers and temperatures are also shown.

The coarse mesh solutions were calculated using a 15 cm mesh. The
steady~state results for both the two-step and flat leakage methods are given
in Figure 2. The coarse mesh solutions required 1000 time steps. The fol-
lowing time domains were used for both coarse mesh solutions:

1) 100 steps with AT = 0.0l sec
2) 300 steps with AT = 0.001 sec
3) 400 steps with AT = 0.0005 sec
4) 100 steps with AT = 0.005 sec
5) 100 steps with AT = 0.01 sec

For both coarse mesh solutions, the coefficient matrices were re-calculated
every four time steps. Figure B.2 shows the assembly powers and temperatures
at various times during the transient for the two-step leakage method. Fig-
ure B.3 shows the assembly powers and temperatures at various times during
the transient for the flat leakage method.

Several runs were made to explore the errors introduced by re-calculating
the coefficient matrices every four time steps, rather than every time step.
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total power, is small; generally

such as
The error in global parameters, obly powers were generally less

being 0.6% or less. Errors in individual asse
than 17%.

Table II compares the three solutions for some key parameters during the .
transient. The two-step leakage method is seen to provide acceptably accurate
results for this problem. Table III contrasts the results from a number of
investigators against the two-step leakage method and the reference solution.
The execution time for the two-step leakage method (210 sec on IBM 370/168)
compares well with those of the CUBBOX* code (180 sec on IBM 360/91) and
the IQSBOX3 code (255 sec on CYBER 17510). The solutions obtained by the
two-step method in Figure B.2 compare well with the solutions presented from

the CUBBOX and IQSBOX codes presented in Reference 10.

TABLE II. Summary of Results for BWR Kinetics Benchmark Problem

Coarse Mesh a Coarse Mesh
Analytic Solution Analytic Solution Reference

(Flat Leakage) (Two-Step) Solution
1) Time to first peak (sec) 1.403 1.426 1.436
2) Mean Power at first peak (w/cc) 5567 5552 5411
3) Time to second peak (sec) 2.0 2.0 2.0
4) Mean Power at second peak (w/cc) 825 815 784
5) Maximum assembly power error at t=0.0 3.0 0.8 0.3

sec (%)

6) Maximum temperature at t=3.0 sec (°K) 3261 3112 2948
7) Average temperature at t=3.0 sec (°K) 1155 1127 1087
8) Number of time steps 1000 1000 2600
9) Execution time (sec) on 370/168 185 210 4152

a .
Coarse mesh solution use 15 cm mesh.

Reference solution is 2-step method with 7.5 cm mesh.

Figure 5 shows the mean power versus time for the reference solution.
The power is observed to rise over ten orders of magnitude, until the tempera-
ture feedback provides enough excess reactivity to halt the power increase.
Ehekpower oscillation is typical of kinetics problems with temperature feed-
ack.

Figure 6 compares the mean powers for the reference solution (circle
symbol o) and the two-step leakage solution (square symbol O) over the inter-

val 1.3<t<2.0 sec. This figure shows that the two-step method provides
acceptably accurate results.

The efficiency of the methods developed in this report can be best demon-
strated by contrasting them with finite difference methods. For this problem
2 mesh-centered finite difference code such as MEKIN!“ requires a (6 x 6) ’
mesh within each 15 cm assembly to achieve a maximum error of 5% 4in the
steady-state power distribution inside each assembly. Therefore, for 1000
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TABLE 1I1. Comparison of Results for BWR Test Problem
4 3 5

Werner Finnemann Shober Sims Reference
Number of 1200 522 1000 1300 2600
Time Steps
CPU Time (sec) 180 255 210 1014 1661
(Computer) 360/91 CYBER 175 370/168 370/168 370/195
Time to first 1.421 1.445 1.426 1.432 1.436
peak (sec)
Power at first 5734 5451 5552 5760 5411
peak (MW)
Time to second 2.0 2.0 2.0 2.0 2.0
peak (sec)
Power at second 800 800* 815 840 784
peak (MW)
Average Temp. 1070 1100%* 1127 1142 1087
at 3.0 sec (°K)
Maximum Temp. 2925 2989 3163 2948

at 3.0 sec (°K)

3112

*
Approximate

BWR

10*

TEST PROBLEM -

REFERENCE SOLUTION

1)
6-000 0'575 0-7S0 1'325 l°300 1'575 2'550 2:%25
TIME (SEC)
Fig. 5. Reference Solution Mean Power Versus Time

ANL Neg. No. 116-78-157
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BWR TEST PROBLEM - REFERENCE AND COARSE MESH RESULTS
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Fig. 6. Reference and Coarse Mesh Solution Mean Power Versus Time
ANL Neg. No. 116-78-156R1l

times steps, MEKIN would require 57 minutes of computing time on an IBM
370/168. 1In addition, MEKIN uses a semi-explicit time integration method
which usually requires substantially smaller time steps for equivalent
accuracy than the fully-implicit method used here. Therefore, the two-step
method is between 20 and 60 times more efficient than a conventional finite
difference code such as MEKIN.,



V. SUMMARY

A. Summary of Results

The test problem results shown in this report demonstrate the accuracy
and efficiency of the methods developed here. In general, the two-step leak-
age method produced acceptably accurate results for all the test problems
presented here. In addition, the execution times were comparable to other
highly successful nodal methods which have been reported in the literature.

B. Further Developments

Up to the present time, very little work has been done towards applying
nodal schemes to the analysis of fast reactors. Fast reactors have generally
larger diffusion lengths; thus finite difference methods are more effective
in theilr analysis than for LWR's. However, demands of multidimensional fast
reactor analysis make investigation into the application of nodal methods
potentially fruitful.

A brief study of the algebra in Appendix A demonstrates clearly why the
method developed in this report is restricted to one- or two-energy groups.
There are, however, several different techniques for the possible extension
of this method to multigroup problems.

Equation (II.30) is a very general equation, evidenced by the fact
that it was obtained from both the response matrix and the analytic solu-
tion techniques. If other, more indirect means were available for deter-
mining the matrices [Ai 2] and [Bi 1], the method could be extended in a

b} 3y
straightforward manner. One possible technique would be to diagonalize the
[N, ]h

matrix e i; another possible technique is to use some form of table look-
up. The diagonalization of the above matrix might prove to be difficult,
since the eigenvectors and eigenvalues of [Ni] would be required. Another
drawback of this scheme is that the resultant equations would have more exten-
sive coupling than that of finite difference methods. This was briefly
discussed in Section II.D.

Another approach is to solve analytically the one-dimensional diffusion
equation for only one group at a time. Let us rewrite Eq. (II.1) as follows:

d d -
- Dg(x) o ¢g(x) + zTg(x) ¢g(x) = Sg(x) (v.1)

where S (x) contains the fissioning and scattering terms into group g.

Equation (V.1) could be solved analytically using the same techniques as shown
in this report, provided the functional form of S (x) were known. It is

doub tful that as simple a form as the flat or even the two-step approximations
would be adequate. However, due to the success in Reference 11, a quadratic

53
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function may be sufficiently accurate. The technique for generating this
quadratic is a subject of future investigation. The advantage of a scheme
such as this would be that the coupling relationship between adjacent average
fluxes would be the same as in conventional finite difference methods.

A number of other improvements are currently under investigation.
Researchers at the Massachusetts Institute of Technology15 are currently
implementing a quadratic transverse leakage approximation as done in Reter-
ences 3 and 5. Such a method would be highly accurate, but may suffer in
execution time. They are also investigating methods of solving the steady-
state equations using Weilandt's iterations. This is being explored so that
the method can be adapted to use a quasistatic treatment of the time depen-

dence.

The similarity of the response matrix and analytic solution derivations
points out the considerable promise of research into the overall relationships
of the nodal methods currently being investigated. Much work has been begun
by Weiss.!® Further investigation into these subjects will doubtlessly be
very fruitful.
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APPENDIX A

CALCULATION OF MATRICES

In the derivation of the computing equations, the following matrices are
required:

(4" = (tanh[N,]h,/2) . element (1,2)
[Bi] = (Sinh_l[Ni]hi)[Ni]hi element (1,1)
(0'] = - (sinh '[NIhOh, + (N7 elenent (1,2)
(F'] = (v,7" (3) (anh[N In/2) element (1,2)

- i - tanh[Ni]hi/4}2

Assume region Ri (xi < x E-xi+l) is homogeneous. In two groups, we can
write the diffusion equations:

d? 1
e 2l PR szz ¢, )
= 0 (A.1)
dZ
zrl D, & ~ Laf |92
L_ - e -
1
where 2 = z - —-vz
1 T1 A f1
We seek particular solutions such that
d? 2
o 0 6, () -2 0 ¢, (%)
= (A.2)
d2 2
0 ax2 ¢2(x) 0 B ¢2 (x)

We find that the numbers B2 must be chosen such that
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e p—

-, . -
-0,B° - ], vl ¢, (x)
= 0 (A.3)

2} ¢
L. -D,B" - ,(®)

! i

Therefore, the determinant of the coefficient matrix in Eq. (A.3) must vanish.
We find that there are two and only two values of B2 which satisfy Eq. (A.2).

These values, designated k2 and —u2, are defined as:

2 . _;@J_z)
2\D, D

1 2
<zz Zl) 2 vzfzzri
+ 3\ [l=== - == + = (A.4)
V\e, 2p; AD,D,
oop(lah)
2 Dl D2
1 oTN2 vl
2D2 2D1 )\DlD2 :
In the special case where vZf 0, we arrive at the following simple
expressions 2
Dl (A.6)
D, (a.7)

In Eqs. (A.4) and (A.5), u? is always positive, and k2 can be either nega-

tive or positive. If vZf = 0, k2 is always negative.
2



Next, let us define

R(B%) = %_2_ = _r_;_ a.8)
1 D,B +1,
so we also define
R(Kz) = r
2 (A.9)
R(-u7) = s
Therefore, the general solution to Eq. (A.l) is:
. " ]
¢1(X) 1 1
= a1 sin kx + a2 COS KX
¢2(x) __r_J ..r_
1] 1]
+ a3 sinh ux + a4 cosh ux
S | | S
or
+
¢1(x) 11 alsin kx + a, cos kx
= (A.10)
+
¢2(x) r s aasinh HX a4 cosh ux

The corresponding current vector is
. (x) - %4 ()
1 1dx "1

d
3, () 05~ ¢2(x)J
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-D -D a

1 1 1 K CcOS KX = a2 k sin x

-D,r -D,s a3 # cosh ux + a4 y sinh px

Therefore, write the total flux-current vector as

()] = col{4,G0), 6,(x), I (), T,(0)

1 1 0 0 sin kx CcOS KX 0 0 al
r 0 0 sinh ux cosh ux a2
0 -Dl —D1 KCOS KX -ksin kx 0 0 a3
0 —Dzr —Dzs 0 0 pcoshux Y sinh ux a4

= [E] [F(x)] [A]
where
Therefore we write the above equation as

[¢(x)] = [E] [F(x)] [A] (A.11)

Both the matrices [E] and [F(x)] have inverses. They are

s -1 0 0
(E] = o5 s 1
° 0 -3 1
1 2
r _1
0 0 D D

]
(=
N

L
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sin kx 0 %—cos KX 0
1
cOS KX 0 iy sin kx 0
-1
[Fe)1 7™ = 1
0 -sinh ux 0 Ecosh Ux
1 .
| 0 cosh ux 0 - 581nh MX |

The coefficients in the general expansion are then given by

(Al = [(FG)] L (BT [ox)] (A.12)

If a homogeneous region extends from x, and x,, we may find [¢(x,)] in
terms of [@(xz)] by applying Eq. (A.1l) for x = x, and Eq. (A.12) for
x = x,. Thus

2
[e(x )] = [E] [Fx)D] [FGx )1 (BT [00x,)] (4.13)
Defining h = x, - x_, multiplying out and rearranging, we have [G(h)] =

(Fx )] Faepf™

[cos kh 0 - %-sin kh 0 .
0 cosh uh 0 - %-sinh 1kh
Kk sin kh 0 cosh «h 0
. 0 ~ 4 sinh «kh 0 cosh ph i
Therefore
-1
[<1>(x1)] = [E] [6(h)] [E] [<I>(x2)] (A.14)

Comparing Eq. (A.l14) to Eq. (IIL.23), we see

[N,]h
bGPl = e P T [egxy)]
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SO

[N.]h -
e 11 o [E] [em)] (B (A.15)

We can split Eq. (A.15) into sub-blocks:

0
v, I, Eqp O G (M) Gp,y(h) B
e 1 = _1

0 E,y G21(h) G22(h) 0 E,,

Now, we must evaluate certain expressions. Use the identities

sinh x = % (e* - e )
we know
=[N, ]h,
i -1
e * = [E] [G(-h)] [E]
Therefore
) - 1 S -1
sivh [N;]h, = [E] {5 [6(0)] = 5 [G(-h) | [E]
0 0 - %-sin kh 0
E 0
11
- 0 0 0 - %—sinh uh
0 E22 K sin kh 0 0 0
0 -u sinh uh 0 0
-1
Ell 0
. -1 (A.16)
0 E22

or,



sinh [Ni]hi =

11 Hy, ()

0 E,,l LH,® 0

Next, use the identity

tanh x =

or

-1 -1
cann(N,In, = {[E] <[G<h)1 + [6¢-m1) [E17Y

{[E) ([c(h)] - [G(—h)1> (517t}

The inverse is

or

tanh[Ni]hi

x.~1 X -X
)

(ex +e ) (e - e

-3 -1
[E] | [6(0)] + [6(-M)] (E]

[E] ([G(h)] + [G(-hn'l)[m’l

. [E] ([G(h)] - [G(-hn) (et

(E] ([G(h)] + [G(—h)1‘1>

. ([G(h)] - [G(-h)1> [E]7"
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([G(h)] + [G(-h)]> =

Therefore

p—

2 cos kh
0

0

0

<[c(h)1 + [G(-h)l)"l ([G(h)] - [c<—h)1)

i 0 0
0 0
k tan kh 0
" 0 -y tanh uh
= [J()]
so
E
11 0
tanh[N,]h, =
it i
0 E22

21

0
2 cosh ph
0 2
0
_ tan kh
K
0
0
0
0 le(h)
(h) 0

cos kh

0

0

2 cosh th

(A.18)

From relationships Eq. (A.17) and (A.18), we can determine the required

matrices.

1) tanh[Ni]hi/Z

The 1,2 element is

0

J21(h/2)

element 1,2

le(h/Z)

0
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= -1
= [E,] [3,(h/2)] [E}}]

Let [Ai 2] = the 1,2 element of tanh[N,]h /2 then
’ 1 1
<s tan kh/2 _ r tanh uh/2>
KDl uDl
1,2 s-r
(rs tan kh/2 _ rs tanh uh/%)
| KDl uDl
< tan kh/2 + tanh uh/%)
" kD uD
2 2
( r tan xh/2 4+ S tanh ph/2
¥ D D
%2 H9
. =1 . i
2) (sinh [Ni]hi)[Ni]hi element 1,1 denote this as [Bl,l]'
-1 -1
E11 0 0 H21(h) E11 0 0 le
[B"] =
-1 -1
0 Ey2 Hyp () 0 0 ES LN, O
|
1 ~ -1 -1
[B1,1] = [E11] [HZl(h)] [E22] [N21]

when multiplied out, this becomes

i

i

1,1

h (ks csc kh - pr csch uh)
[B]—<>

s-r
(sxk csc kh - sr u csch uh)
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(- x csc kh + u csch rh)

(- xr csc kh + us csch uh)

i, _ -1 -1 ¢ 1.2
3) [D] = - (sinh [Ni]hi)hi + [Ni] (element 1,2)
-1 -1
. E11 0 0 HZl(h) Ell 0
(7] = - h,
_l _l
0 Ey, H ,(h) 0 0 E),
-1
0 N21
+
-1
le 0
i -1 -1 -1
= - +
[0} ,] [E,,] [H;; ()] [E;5] by + [N,)]

use the relationship

1 1
«Z uZ
-1 _ -1
[NZl] [E22]
r S
«Z "Wz
S0
1 _1
«Z Wz
i - _ -1 -1 -
(D] ] h; [E ;] [H, ()] + - (E,,]
r _s
T

when this is expressed, it becomes

(A. 20)



_ csc kh csch uh |[_ s_ 1 7
h, K u D D,
132 sS—-T
_r ecsc <h s csch ph r_ 1
K V] JL D1 D2 ]
1 1 W [ s 1
wZ u ~ D, D—1
1 1 2
+ —
s-r (A.21)
r _ S L _ l__
|<* O I D,
. 2
o (F1 = Y3 )[canhin 0, /2))  {(T] - tanh[N;Th, /4
2 il%i il"i
element (1,2)
o willE 0 0 1. _(h/2)
[Fi] _ 1 21 11 1,2
2 |.-1
N, 0 0 E,, Jz’l(hlz) 0
-1
1 —Jl’z(h/lt) 1 Jl,z(hla) El] 0
) -1
'Jz,l(hﬂ‘) 1 -Jz,l(hla) 0 0 E,,

Element 1,2

-1 -1
L1y 17 (B g) 1 (/D)) Ly (/)] [E,,]

writing out this matrix and defining

h h
P tanKztanK4
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h h
P2 = tanh u 2 tanh M 4
sP1 _ rP2 ) Pl
2 2 2
DlK Dlu DZK
i _ 1
[Fl,Z] ——
rsPl _ rst ) rP1
2 2 2
DlK Dlu DZK
(note if K = iK (imaginary),
- h, h
Pl = (tanh « 2) (tanh « 4))

(A.22)

Next, these formulas have special forms in the reflector. Note if
vzf = 0, then $=. So we evaluate Eqs. (A.19-A.22) by using

2
L'Hopital's rule.

[ t K E
an 2
KDl
i
h h
r tan K 2 r tanh u 2
N KDl uDl
K csc k h
(B} 1 = n
1,1 i

(rx esc kh = rpy csch ph)

0
(A.23)
h
tanh u 2
ub, J
0
(A.24)

(0 csch uh)



[ h csc kh 7
Dlx 0
i
[p; ,] =
1,2 h
hr esc «h , hr csch ph - ——E%SE—EE
i Dlx Dlu 2 il
_ 1 )
- Dlx 0
+
I ,.x 1 (A.25)
2 2 2
| DlK Dlu Dzu ]
Pl
3 c
D.k
1
- . A.26)
7, ,) (
rPl _ rP2 Pz
2 2 2
_DIK Dlu Dzu J

Next, I need to evaluate these expressions for the one-group case. The
following results are obtained

K real Kk imaginary
S b 1 h
[Al,Z] = K tan k 2 o tanh « >
[B1 l] = kh esc kh kh esch kh
[D ] = hecse kh 1 _ h csch kh + 1
1,2 Dk Dk ¢ Dk D2
-1 h -1 h
[Fl,2] = ) {sec kK5 = 1} ) {sech K l}

69



70

where

and



APPENDIX B
RESULTS OF BWR TEST PROBLEM

BWR TEST PROBLEM - REFERENCE SOLUTION
NCRMALIZED ASSEMBLY POWERS AT T= 0.0

MEAN POWER DENSITY= 0.9999985E-06 AVERAGE FUEL TEMPERATURE= 0.300000E 03

9 0.9230 0.8666 0.8266 0.8532 0.9333 9.9727 0.8478 0.0 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.

8 1.4796 1.2805 1.1720 1.2210 1. 4229 1.6806 1.6234 1.3319 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.6611 1. 1494 0.9656 1.0215 1.3390 2.0541 2. 1649 1.6234 0.8478
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 1. 3854 0.9387 0.7817 0.8425 1. 1516 1.8543 2.0541 1. 6806 0.9727
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.7891 0.6702 0.6178 0.6780 0.8646 1.1516 1. 3390 1.4229 0.9333
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.5110 0. 4900 0.4919 0.5524 0.6780 0.8425 1.0215 1. 2210 0.8532
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.4123 0.4063 0.4238 0.4919 0.6178 0.7817 0.9656 1.1720 0.8266
300. 300. 300. 300. 300. 300. 300. 300. 3oo0.
2 0.4395 0. 3991 0.4063 0.4900 0.6702 0.9387 1.1493 1.2805 0.8666
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.6118 0.4395 0.4123 0.5110 0.7891 1.3854 1.6611 1.4796 0.9230
300. 300. 300. 300. 300. 300. 300. 300. 300.

1 2 3 4 5 6 7 8 9

Fig. B.1l. BWR Test Problem Results - Reference Solution
ANL Neg. No. 116-78-176

BWR TEST PROBLEM - REFERENCE SOLUTION
. NORMALIZED ASSEMBLY POWERS AT T= 0. 400E 00
MEAN POWER DENSITY= 0.1386163E-05 AVERAGE FUEL TEMPERATURE= 0.300000E 03

e oo oelm o oogi eme o oempnoeg, oh,
ComoIR IR OVREOUEEOGROEVEE
R A CR - O A
S R L R I i
S oo eme s SEE VT OMEEOER O
R ST O Il
SRS SRS S I S S I S
SRS VIS S S A T
D I A e A

1 2 3 4 ) 6 7 8 9

Fig. B.1l. (Contd) ANL Neg. No. 116-78-177



BWR TEST PRCBLEM - REFERENCE SOLUTION

NORMALIZED ASSENBLY POWERS AT T= 0.800E 00
MEAN POWER DENSITY= 0.3098074E-05 AVERAGE FUEL TEMPERATURE= 0,300000E 03

9 0.7351 0.7104 0.7192 0.8027 0.9466 1.0504 0. 9685 0.0 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
8 1. 1754 1. 0470 1.0204 1. 1558 1. 4608 1.8469 1.9113 1.7003 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1. 3157 0.9362 0.8417 0.9750 1.3954 2.2942 2.6185 2.2726 1.2857
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 1.0961 0.7637 0.6814 0.8057 1.2025 2.0724 2.4823 2.3325 1.4349
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.6250 0.5460 0.5363 0.6399 0.8827 1.2533 1.5479 1.7385 1.1741
300. 300. 300. 300. 300. 3oo, 300. 300. 300.
4 0.4040 0.3979 0.4215 0.5059 0.6599 0.8609 1.0842 1.3278 0.9398
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.3227 0.3256 0.3548 0.4326 0.5655 0.7368 0.9307 1.1462 0.8151
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.3387 0. 3141 0.3321 0.4161 0.5837 0.8294 1.0283 1. 1593 0.7904
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.4670 0.3416 0.3323 0.4262 0.6723 1.1919 1. 4404 1. 2933 0.8115
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 2 3 4 5 6 7 8 9

Fig. B.1l. (Contd) ANL Neg. No. 116-78-169

BWR TEST PROBLEM - REFERENCE SOLUTION
NORMALIZED ASSEMBLY POWERS AT T= 0.120E 01

MEAN POWER DENSITY= 0.7529620E-03 AVERAGE FUEL TEMPERATURE= 0.300000E 03

9 0.5968 0.5944 0.6372 0.7600 0.9489 1.0999 1.0520 0.0 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
8 0.9522 0.8744 0.9054 1.1010 1.4786 1.9585 2.1189 1.9773 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.0626 0.7795 0.7485 0.9359 1.4287 2.4595 2.9525 2.7830 1.6430
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 0.8846 0.6355 0.6066 0.7753 1.2340 2.2245 2.7997 2.8459 1.8104
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.5058 0.4556 0.4760 0.6099 0.8924 1.3244 1.7023 1.9795 1.3610
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.3268 0.3312 0.3698 0.4707 0.6445 0.8720 1. 1288 1. 4059 1.0037
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.2585 0.2676 0.3046 0.3886 0.5257 J3.7014 0.9021 1. 1234 0.8036
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.2668 0.2533 0.2783 0.3615 0.5187 7.7458 0.9349 1.0647 0.7302
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.3636 0.2717 0.2744 0.3638 0.5843 1.0439 1.2704 1. 1494 0.7248
300. 300. 300. 300. 300. 300. 300. 300. .300.
1 2 3 4 5 6 7 8 9

Fig. B.1. (Contd) ANL Neg. No. 116-78-170



BWR TEST PROBLEM - REFERENCE SOLUTION
NOEMALIZED ASSEMBLY POWERS AT T= 0. 140B 01
MEAN POWER DENSITY= 0.6423091E 03 AVERAGE FUEL TEMPERATURE= J.308396E 03

M CU U IR CNE UEOER .
IR oMER e vmoegmoepmoepnoagm e
T OLE CWE N vEp emn oown o
MR M OEn I e g oemp o opp o
R AL S SRR I H
s I A
RIOMEE M oome oW o ems v eny
PR e e g o g oege ym o eg
LI OMER R oemmoowr o oup oour

1 2 3 4 5 6 7 8 9

Fig. B.1l. (Contd) ANL Neg. No. 116-78-167

BRE TEST EROBLEM - REFERENCE SOLUTION

NCRMALIZED ASSEMBLY POWERS AT T= 0.200B 01

MWEAN POWER DENSITY= 0.7841052E 03 AVERAGE FUEL TEMPERATURE= 0.840528E 03

9 0.4640 0.4744 0.5333 0.6716 0.8827 1.0770 1.0938 0.0 0.0
591. 593. 619. 688. 7195. 886. 8717. 300. 300.
8 0.7361 0.6941 0.7561 0.9740 1.3822 1.9396 2.2670 2.3378 0.0
763. 729. 753. 862. 1072, 1348. 1477, 1456. 300.
7 0.8212 0.6180 0.6271 0.8348 1.3535 2.4781 3.2633 3.6350 2.3535
817. 683. 674. 779. 1050. 1627. 1967. 2014. 1364.
6 0.6878 0.5072 0.5127 0.6984 1.1799 2.2585 3.1125 3.7090 2.5429
732. 613. 605. 699. 951. 1505. 1886. 2051, 1460.
5 0.3985 0. 3690 0.4061 0.5509 0.8494 1.3301 1.8314 2.2927 1.6524
549. 526. 541, 615. 770. 1015. 1250. 1447. 1108.
4 0.2627 0.2725 0.3169 0.4215 0.6009 1.8460 1. 1422 1. 4745 1.0809
462, 466. 488. 543. 637. 764. 913. 1077. 862,
3 0.2113 0.2223 0.2600 0.3408 0.4717 J.6u29 0.8457 1.0749 0.7822
430. 435. 455, 499. 571. 665. 774. 896. 730.
2 0.2199 0.2107 0.2351 0.3091 0. 4461 J.6441 0.8151 0.9419 0.6552
435, 428. 441, 484. 564. 679. 17, 847. 678.
1 0.3004 0.2256 0.2299 0.3061 0.4909 3.8760 1.0693 0.9756 0.6225
485. 438, 439. 48u. 595. 825, 940. 881. 666.
1 2 3 4 5 6 7 8 9

Fig. B.1. (Contd) ANL Neg. No. 116-78-168



BWR TEST PROBLEN - REFERENCE SOLUTION

NCRMALIZED ASSEMBLY POWERS AT T= 0.300E 01

MEAN POWER DENSITY= 0.9617526E 02 AVERAGE FUEL TEMPERATURE= J.108732E 04

o e e g o NERONNE WD Mo e
s It o It )
S T e
¢ epmoemmoemmoelmowmbonl R SR W
- R - S O e
CoemmoeapoengovEy MR OWRONED DN
e eamoem opp o ED @R B OO
s - e O N I it
o egmoemp o oM G WMWY VROV
1 2 3 4 5 6 7 8 9

Fig. B.l. (Contd) ANL Neg. No. 116-78-162

BWR TEST PROBLEM - COARSE MESH SOLUTION - TWO-STEP LEAKAGE
NORMALIZED ASSEMBLY POWERS AT T= 0.0

MEAN POWER DENSITY= 0.9999976E-06 AVERAGE FUEL TEMPERATURE= ).300000E 03

9 0.9189 0.8649 0.8260 0.8544 0.9364 0.9772 0.8u481 0.0 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
8 1.4755 1.2788 1.1687 1.2200 1. 4283 1.6859 1.6310 1.3362 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.6633 1. 1447 0.9617 1.0187 1.3383 2.0654 2.1791 1.6310 0.8481
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 1.3862 0.9354 0.7786 0.8400 1.1503 1.8622 2.0654 1.6859 0.9772
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.7852 0.6699 0.6168 0.6775 0.8663 1.1503 1.3383 1.4283 0.9364
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.5079 0. 4887 0.4918 0.5527 0.6775 2.840) 1.0187 1.2200 0.8544
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.4097 0.4048 0.4234 0.4918 0.6168 J.7786 0.9617 1.1687 0.8260
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.4368 0.3980 0.40u48 0.4387 0.6699 0.9354 1. 1447 1.2788 0.8649
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.6111 0. 4368 0.4097 0.5079 0.7852 1.3862 1.6633 1. 4755 0.9189
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 2 3 4 5 6 7 8 9

Fig. B.2. BWR Test Problem Results - Coarse Mesh Two-Step
Leakage Solution ANL Neg. No. 116-78-161



BWR TEST PROBLEM - COARSE MESH SOLUTION - TWO-STEP LEAKAGE
NOBMALIZED ASSEMBLY POWERS AT T= 0.4000E 00

MEAW POWER DENSITY= 0.1390311E-0S5 AVERAGE FUEL TEMPERATORE= 0.300000E 03

9 0.8406 0.7997 0.7812 0.8336 0.9425 1.0105 0.8986 0.9 0.0

300. 300. 300. 300. 300. 300. 300. “300. 300.

8 1. 3484 1.1811 1. 1056 1.1930 1. 4447 1.7562 1.7522 1.4898 0.0
300. 300. 300. 300. 300. 390. 300. 300. 300.
7 1.5185 1.0559 0.910 0.9994 1.3619 2.1661 2.3699 1.9034 1.0286
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 1.2652 0.8625 0.7369 0.8247 1.1715 1.9534 2.2452 1. 9595 1.1693
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.7170 0.6181 0.5828 0.6617 0.8740 1.1929 1. 4255 1.5600 1.0368
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0. 4635 0.4504 0.4625 0.5334 0.6701 0.8477 1. 0446 1. 2637 0.8901
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.3725 0.3713 0.3947 0.4671 0.5949 0.7597 0.9467 1. 1572 0.8206
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.3950 0.3626 0.3740 0.4579 0.6336 0.8895 1.0937 1.2271 0.8324
300. 300. 3oo. 300. 300. 300. 300. 300. 300.
1 0.5507 0.3963 0.3764 0.4726 0.7364 1.3047 1.5699 1.3968 0.8718
300. 300. 300. 300. 300. 306. 300. 300. 300.

1 2 3 4 5 6 7 8 9

Fig. B.2. (Contd) ANL Neg. No. 116-78-163

BWR TEST EROBLEM - COARSE MESH SOLUTION ~ TWO-STEF LEAKAGE
BORMALIZED ASSEMBLY POWERS AT T= 0.6000E 00

MEAN PCWER DENSITY= 0.3165021E-05 AVERAGE FUEL TEMPERATURE= 0.300000E 03

9 0.7287 0.7065 0.7173 0.8038 0.9511 1.0578 0.9707 0.0 0.0

300. 300. 300. 300. 300. 300. 300. "300. 300.
-] 1.1670 1.04186 1.0153 1.1544 1.4678 1.8561 1. 9249 1.7089 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.3119 0.9292 0.8364 0.9716 1. 3951 2.3089 2.6410 2.2927 1.2916
00. 300. 300. 300. 300. 300. 300. 300. 300.
6 1.0924 0.7584 0.6773 0.8026 1.2013 2.0827 2.5003 2.3496 1.4477
300. 300. 300. 300. 300. 300. 300. 300. 300.
S 0.6196 0.5440 0.5343 0.6390 0.8848 1.2533 1.5494 1. 7474 1.1806
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.4001 0.3957 0.4205 0.5058 0.6594 2.8586 1.0814 1. 3261 0.9410
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.3195 0.3235 0.3537 0.4318 0.5638 0.7328 0.9253 1. 1406 0.8129
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.3354 0.3122 0.3300 0.4139 0.5818 3.8240 1.0209 1.1535 0.7861
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.4646 0.3384 0.329 0.4223 0.6667 1.1883 1.4367 1.2844 0.8046
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 2 3 4 5 6 7 8 9

Fig. B.2. (Contd) ANL Neg. No. 116-78-164



BWR TEST PROBLEM - COARSE MESH SOLUTION -~ TWO-STEP LEAKAGE

NORMALIZED ASSEMBLY POWERS AT T= 0.1200E 01
MEAN POWER DENSITY= 0.1065549E-02 AVERAGE FUEL TEMPEEATURE= 0.300000E 03

0.5901 0.5899 0.6347 0.7610 0.9538 1. 1085 1. 0546 0.0 0.0
’ 300. 300. 300. 300. 300. 300. 300. 300. 300.
9 0.9430 0.8679 0.8997 1.0992 1.4858 1.9688 2.1350 1.9868 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.0569 0.7721 0.7430 0.9320 1.4276 2.4738 2.9776 2.8106 1.6523
300. 300. 300. 300. 300. 300. 300. 390. 300.
6 0.8797 0. 6300 0.6023 0.7718 1.2319 2.2340 2.8195 2.8698 1.8285
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.5005 0.4531 0.4738 0.6088 0.8944 1.3245 1.7043 1.9891 1.3686
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.3232 0.3289 0.3687 0.4704 0.6440 0.8697 1.1254 1.4026 1.0041
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.2557 0.2656 0.3034 0.3876 0.5236 0.6971 0.8958 1.1159 0.7999
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.2640 0.2514 0.2763 0.3592 0.5162 2.7396 0.9261 1.0564 0.7243
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.3613 0.2688 0.2714 0.3598 0.5784 1.0383 1.2636 1.1380 0.7164
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 2 3 4 5 6 7 8 9

Fig. B.2. (Contd) ANL Neg. No. 116-78-172

BWR TEST PROBLEM - COARSE MESH SOLUTION - TWO-STEP LEAKAGE
NORMALIZED ASSEMBLY PONERS AT T= 0.1400E 01

NEAN POWER DENSITY= 0.71641903E O4 AVERAGE FUEL TEMPERATURE= J.322066E 03

9 0.5383 0.54u48 0.5997 0.7374 0.9441 1.1167 1.0791 0.0 0.9
312, 312, 313, 316. 321. 325, 324. 300. 300.
8 0.8596 0.8014 0.8512 1.0681 1.4767 1.9937 2.2067 2.1007 0.0
319. 318. 319. 324. 333. 344, 349. 346. 300.
7 0.9625 0.7127 0.7043 0.9091 1.4259 2.5167 3.1032 3.0540 1.8334
321, 316. 316. 320. 332. 356. 369. 367. 340.
6 0.8017 0.5820 0.5719 0.7546 1.2330 2.2764 2.9422 3.1170 2.0196
318. 313. 313, 317. 327. 350. 365. 369. 3u4.
5 0.4576 0.4198 0.4500 0.5940 0.8919 1.3445 1.7624 2.0927 1.4536
310. 309. 310. 313. 320. 330. 339. 346. 332.
4 0.2962 0.3051 0.3491 0.4554 0.6349 0.8700 1. 1394 1.4309 1.0289
307. 307. 308. 310. 314. 319. 325. 332, 323,
3 0.2340 0.2455 0.2852 0.3704 0.5067 0.6807 0.8811 1. 1025 0.7922
305. 305. 306. 308. 311. 315, 319. 324, 317.
2 0.2402 0.2309 0.2574 0.3387 0.4901 0.7047 0.8858 1.0144 0.6971
305. 305. 306. 307. 311, 316. 320. 322. 315.
1 0.3273 0.2455 0.2513 0.3366 0.5435 0.9769 1.1914 1.0764 0.6790
307. 305. 306. 307. 32. 322, 326. 324, 315.
1 2 3 4 5 6 7 8 9

Fig. B.2. (Contd) ANL Neg. No. 116-78-171



BWR TEST PROBLEM - COARSE MESH SOLUTION - TWO-STEP LEAKAGE

NORMALIZED ASSEMBLY POWERS AT T=

BEAN POWER DENSITY=

0.8154958E 03

9 0.4571  0.4692
602. 605.
8 0.7262  0.6864
782. 747.
7 0.8138  0.6099
840. 698.
6 0.6814  0.5009
751, 626.
5 0.3928  0.3655
558. 536.
4 0.2588  0.2696
468. 473,
3 0.2082  0.2198
435, uul,
2 0.2169  0.2084
440. 434,
1 0.2976  0.2225
493. 443,
1 2
Fig. B.2.

B¥R TEST PROBLEM - COARSE MESH SOLUTION - TWO-STEP LEAKAGE

BORMALIZED ASSEMBLY POWERS AT T=

MEAN POWER DENSITY=

9 0.4999
726,
8 0.7947
979.
7 0.8926
1062.
6 0.7490
937.
5 0.4327
665,
4 0.2871
539.
3 0.2340
492.
2 0.2473
500.
1 0.3424
576.

0.9703024E 02

0.5052
731.

0. 7395
932.

0.6582
862.

0.5418
761.

0.3965
635.

0.2946
546.

0.2433
501.

0.2343
431,

0.2525
505.

Fig. B.2.

0.5297
633.

0.7489
172.

0.6204
690.

0.5072
617.

0.4026
551.

0.3148
496.

0.2580
462.

0.2326
447,

0.2267
LT

0.2000E 01

0.6710
708.

0.9699
889.

0.8289
800.

0.6930
716.

0.5481
629.

0.4199
554.

0.3388
508.

0.3061
492.

0.3018
491.

AVERAGE FUEL TEMPERATUBE=

0.8861
822.

1.3867
1113,

1.3495
1085.

1.1751
981.

0.8496
794.

0.5991
654,

0.4686
584.

0. 4425
575.

0.4843
606.

1.0857
921.

1.9496
1406.

2.4890
1701.

2.2646
1570.

1.3293
1050.

0.8428
786.

2.6375
681.

0.6368
695.

J.8685
849,

0,.867526E 03

1.0968 0.0
908. 300.

2.2863 2.3494
1546. 1520.

3.2922 3.6826
2065. 2119.

3.1352 3.7523
1976. 2156.

1.8344 2.3036
1298. 1509.

1.1377 1. 4681
91, 1113,

0.8379 1.0649

794. 921.
0.8049 0.9312
196. 869.
1.0601 0.9623
968. 903.
7 8

(Contd) ANL Neg. No. 116-78-179

0.55u6
7174,

0.7831
971.

0.6481
854.

0.5307
752.

0.4235
658.

0.3346
581.

0.2786
531.

0.2551
510.

0.2510
506.

0.3000E 01

0.6821
884.

0.9825
1142,

0.8370
1017.

0.7003
8

0.5579
773.

0.4335
665.

0.3567
599.

0.3281
5T4.

0.3265
572.

AVERAGE FPUEL TEMPERATURE=

0.8806
1051.

1.3716
1472,

1.3289
1433,

1.1579
1284,

0.8436
1014,

0.6046
810.

0.4839
707.

0.4669
693.

0.5162
736.

1.0638
1200.

1.8993
1906.

2.4185
2339.

2.2017
2150.

1.3001
1391.

0.8378
1004.

J.6498
848,

J.6657
864.

2.9194
1081.

0.112733E 04

1. 0656 0.0
1189. 300.

2.2088 2.2601
2131, 2121,

3.1717 3.5309
2905. 3058.

3.0224 3.6005
27717. 3112,

1.7785 2.2255
1767. 2097.

1.1211 1.4419
1234, 1490.

0.8471 1.0728
1012, 1198.

0.8358 0.9628
1008. 1115,

1.1165 1.0095
1250. 1159.

(Contd) ANL Neg. No. 116-78-178
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BWR TEST PROBLEM - COARSE MESH SOLUTION - FLAT LEAKAGE

NORMALIZED ASSEMBLY POWERS AT T= 0.0

MEAN POWER DENSITY=

9 0.9054
300.

8 1.4610
300,

7 1.6608
300.

6 1.3842
300.

5 0.7755
300.

" 0.4977
300.

3 0.4007
300.

2 0.4287
300.

1 0.6052
300.

1
Fig. B.3.

0.1000000E-05 AVERAGE FUEL TENPERATURE= ).300000E 03

.8587 0.8245 0.8588 0.9475 2.9893 0.8570 0.0
° 330. 300. 300. 300. 300. 300. 300.
1.2687 1.1613 1.2202 1.4410 1.7065 1.6581 1.3627
300. 300. 300. 300. 300. 300. 300.
1.1325 0.9492 1.0107 1.3421 2.099) 2.2223 1.6581
300. 300. 300. 300. 300. 300. 300.
0.9255 0.7680 0.8319 1.1506 1.8871 2.0990 1.7066
300. 300. 300. 300. 300. 300. 300.
0.6648 0.6131 0.6759 0.8675 1.1506 1.3421 1. 4410
300. 300. 300. 300. 300. 300. 300.
0. 4844 0.4908 0.5529 0.6759 0.8319 1.0107 1.2202
300. 300. 300. 300. 300. 300. 300.
0.4001 0.4216 0.4908 0.6131 J.7680 0.9492 1.1613
300. 300. 300. 300. 300. 300. 300.
0.3923 0.4001 0.4844 0.6648 3.9255 1.1325 1.2687
300. 300. 300. 300. 300. 300. 300.
0.4287 0.4007 0.4977 0.7755 1.3842 1.6608 1.4610
300. 300. 300. 300. 300. 300. 300.

2 3 4 5 6 7 8

BWR Test Problem Results - Coarse Mesh Flat
Leakage Solution ANL Neg. No. 116-78-175

BWR TEST PROBLEM ~ COARSE MESH SOLUTION - FLAT LEAKAGE

NORMALIZED ASSEMBLY POWERS AT T= 0.4000E 00

MEAN POWER DENSITY=

9 0.8254
300.
8 1.3305
300.
7 1.5110
300.
6 1.2592
300.
5 0.7061
300.
4 0. 4531
300.
3 0.3636
300.
2 0.3868
300.
1 0.5442
300.

Fig.

0.1402642E~05 AVERAGE FUEL TEMPERATURE= 0.300000E 03

0.7917 0.7785 0.8379 0.95u8 1.0249 0.9098 0.0
300. 300. 300. 300. 300. 300. 300.

1.1682 1.0965 1.1929 1. 4586 1.7801 1.7845 1.5217

300. 300. 300. 300. 300. 300. 300.
1.0416 0.8967 0.9909 1.3659 2.2023 2.4198 1.9406
300. 300. 300. 300. 300. 300. 300.
0.8509 0.7255 0.8160 1.1717 1.9800 2.2841 1.9893
300. 300. 300. 300. 300. 300. 300.
0.6118 0.5784 0.6597 0.8753 1.1941 1.4312 1.5757
300. 300. 300. 300. 300. 300. 300.
0. 4455 0.4608 0.5332 0.6684 J.8396 1.0365 1.2632
300. 300. 300. 300. 300. 300. 300.
0.3663 0.3924 0.4655 0.5907 J.7484 0.9329 1. 1471
300. 300. 300. 300. 300. 300. 300.
0.3568 0.3690 0.4530 0.6273 0.8776 1.0786 1.2132
300. 300. 300. 300. 300. 300. 300.
0.3880 0.3675 0.4621 0.7252 1.29684 1.5617 1.3775
300. 300. 300. 300. 300. 300. 300.
2 3 4 5 6 7 8

B.3. (Contd) ANL Neg. No. 116-78-174

0.0
300.

0.0
ioo0.

0.8570
300.

0.9893
300.

0.9475
300.

0.8588
300.

0.8245
300.

0.8587
300.

0.9054
300.

0.0
300.

0.0
300.

1.0435
300.

1.1880
300.

1.0505
300.

0.89u1
300.

0.8172
300.

0.8236
300.

0.8557
300.



BWR TEST PROBLEM - COARSE MESH SOLUTION - FLAT LEAKAGE
NORMALIZED ASSEMBLY POWERS AT T= 0.8000E 00
MEAN POWER DENSITY= 0.3336835E-05 AVERAGE PUEL TEMPERATURE= 0.300000E 03

9 0.7106 0.6954 0.7124 0.8076 0.9649 1.0755 0.9854 0.3 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.

8 1. 143 1.0239 1.0033 1. 1535 1.4834 1.8849 1.9656 1.7499 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.2960 0.9110 0.8212 0.9622 1.3996 2.3495 2.7017 2.3469 1.3172
300. 300. 300. 300. 300. 300. 300. 300. 300.
6 1.0797 0.7439 0.6645 0.7931 1.2015 2.1123 2.5480 2.3949 1.4778
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.6064 0.5356 0.5284 0.6364 0.8863 1.2560 1.5585 1.7685 1.1988
300. 300. 300. 300. 300. 3oo. 300. 300. 300.
4 0.3891 0.3896 0.4177 0.5048 0.6575 0.8507 1.0733 1. 3248 0.9447
300. 300. 300. 300, 300. 300. 300. 300. 300.
3 0.3104 0.3178 0.3505 0.4292 0.5584 0.7203 0.9095 1. 1267 0.8066
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.3268 0. 3058 0.3243 0.4079 0.5736 J.8091 1.0014 1.1336 0.7733
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 0.4566 0.3297 0.3199 0.4110 0.6531 1.1753 1.4196 1.2578 0.7843
300. 300. 300. 300. 300. 300. 300. 300. 300.

1 2 3 4 5 6 7 8 9

Fig. B.3. (Contd) ANL Neg. No. 116-78-166

BWR TEST PROBLEM - COARSE MESH SOLUTION - FLAT LEAKAGE
NOKMALIZED ASSEMBLY POWERS AT TI= 0.1200E 01

MEAN POWER DENSITY= 0.2747864E-02 AVERAGE FUEL TEMPERATURE= 0.300000E 03

9 0.5708 0.5768 0.6282 0.7641 0.9682 1.1287 1.0714 0.0 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
8 0.9158  0.8472 0.8855 1.0969 1.5012 1.9993 2.1818 2.0351 0.0
300. 300. 300. 300. 300. 300. 300. 300. 300.
7 1.0355 0.7520 0.7267 0.9211 1.,4303  2.5146  3.0459 2.8830 1.6903
300. 300. 300. 300. 300. 300. 300, 3090. 300.
6 0.8628  0.6141 0.5888  0.7610 1.2303 2.2629 2.8730 2.9319 1.8719
300. 300. 300. 300. 300. 300. 300. 300. 300.
5 0.4867 0.4438 0.4670 0.6054 0.8953 1.3272 1.7151 2.0141 1.3906
300. 300. 300. 300. 300. 300. 300. 300. 300.
4 0.3129 0.3226 0.3653 0.4690 0.6418 J).8616 1. 1164 1.3987 1.0060
300. 300. 300. 300. 300. 300. 300. 300. 300.
3 0.2476 0.2601 0.3000 0.3845 0.5176 3.6836 0.87175 1.097M 0.7898
300. 300. 300. 300. 300. 300. 300. 300. 300.
2 0.2563 0.2455 0.2708 0.3529 0.5066 3.7221 0.9022 1.0301 0.7069
300, 300. 300. 300. 300. 300. 300. 300. 300.
1 0.3537 0.2610 0.2630 0.3u87 0.5632 1.0191 1.2379 1. 101 0.6919
300. 300. 300. 300. 300. 300. 300. 300. 300.
1 2 3 4 5 6 7 8 9

Fig. B.3. (Contd) ANL Neg. No. 116-78-165



BWR TEST PROBLEM - COARSE MESH SOLUTION - FLAT LEAKAGE

NORMALIZED ASSEMBLY POWERS AT T= 0.1400E O

HEAN POWER DENSITY= 0.5430645E 04 AVERAGE FUEL TENPERATURE= 0.416997E 03

LS I R L
LU S S B
LS R R
¢ oempoegm g Lm age age g g
ey oeg e emmoeame ugmopp e
Yoo oeup eEe o egnome upongyoa
S - UK S A A
S o S S AL S L S
LR NI CEE O en cup vup vy oo

1 2 3 4 5 6 7 8 9

Fig. B.3. (Contd) ANL Neg. No. 116-78-160

BWR TEST PROBLEM -~ COARSE MESH SOLUTION - FLAT LEAKAGE
NORMALIZED ASSEMBLY POWERS AT T= 0.2000E 01

MEAN POWER DENSITY= 0.8253372E 03 AVERAGE FUEL TEMPERATURE= 0.890799E 03

9 0.4417 0.4583 0.5234 0.6722 0.8973 1.1032 1.1110 0.0 0.0
606. 611, 64y, 726. 851. 957. 941, 300. 300.
8 0.7046 0.6691 0.7351 0.9641 1.3941 1.9700 2.32MNM 2.3960 0.0
789. 756. 784, 9gn. 1153, 1466. 1620. 1595, 300.
7 0.7970 0.5932 0.6050 0.8147 1.3421 2.5108 3.3493 3.77.6 2.4335
854, 705. 697. 814, 1116. 1775, 2171, 2238. 1485,
6 0.6685 0.4879 0.49%44 0.6795 1.1650 2.2767 3.1780 3.8305 2.6407
763. 632. 623, 727, 1005. 1633. 2070. 2268. 1610.
5 0.3823 0.3580 0.3963 0.5434 0.8470 1.3268 1.8399 2.3244 1.6848
563. 541. 558. 641, 814, 1080. 1342, 1569. 1199.
4 0.2512 0.2650 0.3121 0.4186 0.5968 J.8345 1.1263 1.4565 1.0756
471. 477. 503. 564, 667. 801, 961. 1141, 913.
3 0.2026 0.2163 0.2559 0.3368 0.u4638 2.6255 0.8193 1.0420 0.7
u37. uy, 467. 516. 593. 689. 804. 935, 72%?
2 0.2121 0.2048 0.229 0.3017 0.4350 J.6217 0.7826 0.9046
. . . - . 0.629
443, 437. 451, 497, 582. 702. 804, a7s, 639?
1 0.2939 0.2177 0.2209 0.2935 0.u4723 V.8525 1.0368 0.9306
. . . . . . 0.5899
499, 446. u47. 494, 611. 863, 983, 910. 684,
1 2 3 [ 5 6 7 8 9

Fig. B.3. (Contd) ANL Neg. No. 116-78-159



BWR TEST PROBLEM - COABSE HMESH SOLUTION - FLAT LEAKAGE
NORMALIZED ASSEMBLY POWERS AT T= 0.3000E 01

MEAN POWER DENSITY= 0.9817201E 02 AVERAGE FUEL TEMPERATURE= J.115516E 04

9 0.4853 0.4953 0.5491 0.6836 0.8915 1.0803 1.0788 0.0 0.0
728. 737. 786. 906. 1087. 1246. 1231. 300. 300.

8 0.7748 0.7237 0.7704 0.9772 1. 3788 1.9188 2.2466 2.3032 0.0
984. 940. 983. 1167. 1520. 1980. 2226. 2219. 300.
7 0.8783 0.6426 0.6334 0.8234 1.3218 2.4383 3.2246 3.6139 2.3307
1075. 867. 861. 1030. 1468. 2430, 3041. 3215. 2127.
6 0.7380 0.5296 0.5185 0.6873 1. 1481 2.2129 3.0618 3.6722 2.5318
949. 766. 757. 907. 1310. 2226. 2896. 3261. 2296.
5 0.4228 0.3897 0.4177 0.5535 0.8413 1.2974 1.7831 2.2442 1.6268
669. 640. 665. 786. 1037. 1427. 1821, 2174, 1637.
4 0.2795 0.2902 0.3324 0.4326 0.6026 J.8298 1. 1100 1. 4307 1.0565
Su1. 550. 588. 677. 825. 1020. 1256. 1522. 1195,
3 0.2282 0.2399 0.2768 0.3551 0.4796 2.6384 0.8296 1.0516 0.7689
4gu. 504. 538. 607. 717. 856. 1021. 1211. 963.
2 0.2425 0.2307 0.2518 0.3240 0.4602 0.6519 0.8153 0.9386 0.6519
503. 494. 515. 579. 700. 870. 1014, 1121. 868.
1 0.3390 0.2476 0.2451 0.3184 0.5051 0.9060 1.0967 0.9806 0.6206
582. 507. 508. 574. 740. 1095. 1265. 1162. 8u4u.

1 2 3 4 5 6 7 8 9

Fig. B.3. (Contd) ANL Neg. No. 116-78-173
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